数学
如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D.交⊙O于点A,延长AD与⊙0交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)若tan∠F=
1
2
,求cos∠ACB的值.
在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A、B重合),过点M作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN,令AM=x.
(1)当x为何值时,⊙O与直线BC相切?
(2)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y与x间函数关系式,并求x为何值时,y的值最大,最大值是多少?
已知:如图,AB=AC,以AB为直径的⊙O交BC于点D,过D作DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)如果⊙O的半径为2,sin∠B=
1
2
,求BC的长.
如图一,在△ABC中,分别以AB,AC为直径在△ABC外作半圆O
1
和半圆O
2
,其中O
1
和O
2
分别为两个半圆的圆心.F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.
(1)连接O
1
F,O
1
D,DF,O
2
F,O
2
E,EF,证明:△DO
1
F≌△FO
2
E;
(2)如图二,过点A分别作半圆O
1
和半圆O
2
的切线,交BD的延长线和CE的延长线于点P和点Q,连接PQ,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;
(3)如图三,过点A作半圆O
2
的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连接PA.证明:PA是半圆O
1
的切线.
已知:AB是⊙O的直径,BC是⊙O的切线,B是切点,点D是⊙O上一点,AD∥OC,OC交BD于E.
(1)求证:OC是BD的中垂线;
(2)试判断CD与⊙O的位置关系,证明之.
如图,在△ABC中,∠C=90°,AC+BC=8,∠ACB的平分线交AB于点O,以O为
圆心的⊙O与AC相切于点D.
(1)求证:⊙0与BC相切;
(2)当AC=2时,求⊙O的半径.
如图,已知AB是⊙O的直径,CA,DB分别与⊙O相切于点A,B,E为上⊙O的一点,连接CE并延长交BD于点D,连接OC,BE,OC∥BE.若AB=3,AC=1,BD=
9
4
(1)求OC与OD的长分别是多少?
(2)求证:CD是⊙O切线;
(3)求证:△COD是直角三角形.
直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,DE⊥MN于点E.
(1)判断DE是否为⊙O的切线,并说明理由.
(2)当DE是4cm,AE是2cm时,求⊙O的半径.
如图,在等腰△ABC中,AB=AC,O为AB上一点,以O为圆心,OB长为半径的圆交BC于D,DE⊥AC交AC于点E.
(1)求证:DE是⊙O的切线;
(2)若⊙O与AC相切于点F,⊙O的半径为2cm,AB=AC=6cm,求∠A的度数.
如图①,在平面直角坐标系中,点A从点(1,0)出发以每秒1个单位长度的速度沿x轴向右运动,在运动过程中,以OA为一边作菱形OABC,使B、C在第一象限,且∠AOC=60°,连接AC、OB;同时点M从原点O出发,以每秒
3
个单位长度的速度沿对角线OB向点B运动,若以点M为圆心,MA的长为半径画圆,设运动时间为t秒.
(1)当t=1时,判断点O与⊙M的位置关系,并说明理由.
(2)当⊙M与OC边相切时,求t的值.
(3)随着t的变化,⊙M和菱形OABC四边的公共点个数也在变化,请直接写出公共点个数与t的大小之间的对应关系.
第一页
上一页
66
67
68
69
70
下一页
最后一页
1085627
1085629
1085631
1085633
1085635
1085637
1085639
1085642
1085644
1085646