试题
题目:
如图,在等腰△ABC中,AB=AC,O为AB上一点,以O为圆心,OB长为半径的圆交BC于D,DE⊥AC交AC于点E.
(1)求证:DE是⊙O的切线;
(2)若⊙O与AC相切于点F,⊙O的半径为2cm,AB=AC=6cm,求∠A的度数.
答案
(1)证明:连接OD,则OB=OD,
∴∠1=∠2.
又∵AB=AC,
∴∠1=∠C,
∴∠2=∠C,
∴OD∥AC﹒
又∵DE⊥AC,
∴半径OD⊥DE﹒
∴DE是⊙O的切线;
(2)解:如图,连接OF.
∵⊙O与AC相切于点F,
∴半径OF⊥AC.
又∵AB=6cm,OF=OB=2cm,
∴AO=4cm,
∴AO=2OF,
∴∠A=30°.
(1)证明:连接OD,则OB=OD,
∴∠1=∠2.
又∵AB=AC,
∴∠1=∠C,
∴∠2=∠C,
∴OD∥AC﹒
又∵DE⊥AC,
∴半径OD⊥DE﹒
∴DE是⊙O的切线;
(2)解:如图,连接OF.
∵⊙O与AC相切于点F,
∴半径OF⊥AC.
又∵AB=6cm,OF=OB=2cm,
∴AO=4cm,
∴AO=2OF,
∴∠A=30°.
考点梳理
考点
分析
点评
切线的判定与性质;等腰三角形的性质.
(1)如图,连接OD,欲证明DE是⊙O的切线,只需证明OD⊥DE即可;
(2)连接OF.根据切线的性质构建直角△AFO,易求AO=2OF,故由“直角三角形中,30度角所对的直角边等于斜边的一半”求得∠A=30°.
本题考查了切线的判定与性质,等腰三角形的性质.常见的辅助线的:
①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;
②有切线时,常常“遇到切点连圆心得半径”.
找相似题
(2012·桂平市三模)如图,直线AC∥BD,⊙O与AC和BD分别相切于点A和点B.点M和点N分别是AC和BD上的动点,MN沿AC和BD平移.⊙O的半径为1,∠1=60°.下列结论错误的是( )
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
在正方形ABCD中,E为AD中点,AF丄BE交BE于G,交CD于F,连CG延长交AD于H.下列结论:
①CG=CB;②
HE
BC
=
1
4
;③
EG
GF
=
1
3
;④以AB为直径的圆与CH相切于点G,其中正确的是
①②③④
①②③④
.
如图,以△ABC的直角边AB为直径的半圆O与斜边AC交于点D,E是BC边的中点.若AD、AB的长是方程x
2
-6x+8=0的两个根,则图中阴影部分的面积为
4
3
-
4
3
π
4
3
-
4
3
π
.
(2013·雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)