数学
已知点A(-3,2),点C(-2,0),过点C画CB⊥AC交y轴于点B,连接AB得△ABC.
(1)求点B的坐标;
(2)将△ABC沿x轴正方向平移后得到△A′B′C′,点A′,B′恰好落在双曲线上,求该双曲线的解析式和平移的距离.
如图,Rt△ABO的顶点A是反比例函数
y=
k
x
与一次函数y=-x+(k+1)的图
象在第四象限的交点,AB⊥x轴于B,且S
△ABO
=
5
2
.
(1)求这个反比例函数和一次函数的解析式;
(2)求这个一次函数的图象与坐标轴围成的三角形的面积.
已知:反比例的函数图象如图所示经过点A.
(1)求y与x之间的函数关系式;
(2)若该反比例函数图象经过点B(a,y
1
),点C(2a,y
2
),当a>0时,试比较y
1
与y
2
的大小.
如图所示,在直角坐标系平面内,函数y=
m
x
(x>0,m是常数)的图象经过A(1,4),B(a、b)其中a>1,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD,DC,CB且BD,AC交于点E.
(1)用含a的代数式表示E点的坐标;
(2)若△ABD的面积是4,求点B的坐标;
(3)当CD=
5
3
时,求点B的坐标;
(4)求△ADE的面积与△CBE的面积的比值?
已知:如图,矩形ABCD的边BC在x轴上,E是对角线AC、BD的交点,反比例函数
y=
2
x
(x>0)的图象经
过A,E两点,点E的纵坐标为m.
(1)求点A坐标(用m表示)
(2)是否存在实数m,使四边形ABCD为正方形,若存在,请求出m的值;若不存在,请说明理由.
如图所示,在Rt△AOB中,点A是直线y=x+m与双曲线y=
m
x
在第一象限内的交点,且S
△AOB
=2,求m的值.
已知反比例函数
y=
m
x
的图象经过点A(-2,1),一次函数y=kx+b的图象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B.
(1)分别求出反比例函数与一次函数的解析式;
(2)求点B的坐标;
(3)求三角形OAB的面积;
(4)在x轴是否存在一点P使△OAP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.
已知:如图,在直角坐标系xoy中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,对角线
AC与OB相交于P,且BC=4,AB=6.
(1)求过点P的反比例函数的解析式;
(2)若该反比例函数的图象与AB交于点Q,求直线PQ的解析式.
如图,在平面直角坐标系中,A是反比例函数
y=
k
x
(x>0)图象上一点,作AB⊥x轴于B点,AC⊥y轴于C点,得正方形OBAC的面积为16.
(1)求A点的坐标及反比例函数的解析式;
(2)点P(m,
16
3
)是第一象限内双曲线上一点,请问:是否存在一条过P点的直线l与y轴正半轴交于D点,使得BD⊥PC?若存在,请求出直线l的解析式;若不存在,请说明理由;
(3)连BC,将直线BC沿x轴平移,交y轴正半轴于D,交x轴正半轴于E点(如图所示),DQ⊥y轴交双曲线于Q点,QF⊥x轴于F点,交DE于H,M是EH的中点,连接QM、OM.下列结论:①QM+OM的值不变;②
QM
OM
的值不变.可以证明,其中有且只有一个是正确的,请你作出正确的选择并求值.
一个反比例函数的图象经过点A(1,3),O是原点.
(1)点B是反比例函数图象上一点,过点B作BC⊥x轴于C,作BD⊥y轴于D,四边形OCBD的周长为8,求OB长.
(2)作直线OA交反比例函数图象于点A′,在反比例函数图象上是否存在点P(记横坐标为m)使得△APA′面积为2m?若存在,求P的坐标;若不存在,请说明理由.
第一页
上一页
86
87
88
89
90
下一页
最后一页
1077838
1077841
1077844
1077846
1077848
1077851
1077853
1077856
1077858
1077861