试题
题目:
已知点A(-3,2),点C(-2,0),过点C画CB⊥AC交y轴于点B,连接AB得△ABC.
(1)求点B的坐标;
(2)将△ABC沿x轴正方向平移后得到△A′B′C′,点A′,B′恰好落在双曲线上,求该双曲线的解析式和平移的距离.
答案
解:(1)过点A作AD⊥x轴于点D,
∵A(-3,2),C(-2,0)
∴AD=2,OD=3,CO=3-1=2,∠ACO=∠ACB+∠BCO=∠DAC+∠BCO,
∴∠DAC=∠OCB,
在△ADC与△COB中,
∵
∠DAC=∠BCO
AD=OC
∠ADO=∠COB=90°
∴△ADC≌△COB(ASA),
∴DC=OB=1
∴B(0,1);
(2)设△ABC平移的距离为m,
则A′(-3+m,2);B′(m,1);
∵点A′,点B′都在同一个反比例函数图象上,
∴2(-3+m)=m,解得m=6,
∴反比例函数的解析式为y=
6
x
,
∴平移的距离为6.
解:(1)过点A作AD⊥x轴于点D,
∵A(-3,2),C(-2,0)
∴AD=2,OD=3,CO=3-1=2,∠ACO=∠ACB+∠BCO=∠DAC+∠BCO,
∴∠DAC=∠OCB,
在△ADC与△COB中,
∵
∠DAC=∠BCO
AD=OC
∠ADO=∠COB=90°
∴△ADC≌△COB(ASA),
∴DC=OB=1
∴B(0,1);
(2)设△ABC平移的距离为m,
则A′(-3+m,2);B′(m,1);
∵点A′,点B′都在同一个反比例函数图象上,
∴2(-3+m)=m,解得m=6,
∴反比例函数的解析式为y=
6
x
,
∴平移的距离为6.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
(1)过点A作AD⊥x轴于点D,由A(-3,2),C(-2,0)可知AD,OD,CO的长,根据全等三角形的判定定理可得出△ADC≌△COB,故DC=OB=1,由此可得出B点坐标;
(2)设△ABC平移的距离为m,则A′(-3+m,2);B′(m,1);由点A′,点B′都在同一个反比例函数图象上,可知2(-3+m)=m,由此可得出m的值,进而得出结论.
本题考查的是反比例函数综合题,熟知反比例函数中k=xy为定值是解答此题的关键.
探究型.
找相似题
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·随州)如图,直线l与反比例函数y=
2
x
的图象在第一象限内交于A,B两点,交x轴于点C,若AB:BC=(m-1):1(m>1),则△OAB的面积(用m表示)为( )