数学
如图,已知∠A=∠D,AD、BC交于点O.
(1)试说明△AOB∽△DOC.
(2)若AO=2,DO=3,CD=5,求AB的长.
如图,AB,AC,AD是圆中的三条弦,点E在AD上,且AB=AC=AE.请你说明以下各式成立的理由:
(1)∠CAD=2∠DBE;
(2)AD
2
-AB
2
=BD·DC.
如图,正方形ABCD,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边BC于O,交边AB的延长线于N.
(1)选图中任一对相似三角形,并证明;
(2)若∠P=60°,CP=2,求OE的长.
如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连接DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).
(1)填空:当t=
5
3
5
3
时,AF=CE,此时BH=
20
9
20
9
;
(2)当△BEF与△BEH相似时,求t的值;
(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.
①求S关于t的函数关系式;
②直接写出C的最小值.
已知△ABC和△ADE分别是以AB、AE为底的等腰直角三角形,以CE,CB为边作平行四边形CEHB,连DC,CH.
(1)如图1,当D点在AB上时,则∠DEH的度数为
45°
45°
;CH与CD的数量关系是
CH=
2
DC
CH=
2
DC
.
(2)将图1中的△ADE绕A点逆时针旋转45°得图2,(1)中结论是否成立,试说明理由.
(3)将图1中的△ADE绕A点顺时针旋转α(O°<α<45°)得图3,请探究CH与CD之间的数量关系,并给予证明.
把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.
(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP·CQ
=8
=8
.
(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP·CQ的值是否改变?说明你的理由.
(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)
如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.
(1)求证:△ABE∽△DEF;
(2)求EF的长.
如图所示,已知在△ABC中,∠BAC=90°,AD⊥BC,E是AC的中点,ED交AB延长线于F,求证:
AB
AC
=
DF
AF
.
如图,在△ABC中,∠BAC=90°,AC=3cm,AB=4cm,AD⊥BC于D,与BD等长的线段EF在边BC上沿BC方向以1cm/s的速度向终点C运动(运动前EF与BD重合),过E,F分别作BC的垂线交直角边于P,Q两点,设EF
运动的时间为x(s).
(1)若△BEP的面积为ycm
2
,求y关于x的函数解析式,并写出自变量x的取值范围;
(2)线段EF运动过程中,四边形PEFQ有可能成为矩形吗?若有可能,求出此时x的值;若不可能,说明理由;
(3)x为何值时,以A,P,Q为顶点的三角形与△ABC相似?
如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随
之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).
(1)设四边形PCQD的面积为y,求y与t的函数关系式;
(2)t为何值时,四边形PQBA是梯形?
(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由.
第一页
上一页
68
69
70
71
72
下一页
最后一页
1165170
1165176
1165178
1165182
1165185
1165187
1165189
1165191
1165195
1165197