数学
如图1,正方形ABCD的对角线相交于点M,正方形MNPQ与正方形ABCD全等,MN、MQ分别交正方菜ABCD的边于E、F两 点.
(1)试判断ME与MF之间的数量关系,并给出证明.
(2)若将题中的“正方形MNPQ与正方形ABCD”改为“矩形MNPQ与矩形ABCD”,且BC=2AB,其他条件不变,当矩形MNPQ与矩形ABCD的位置如图2所示时,请判断ME与MF之间的数量关系,并给出证明.
如图△ABC中,AB=AC,BD∥AC,CE∥AB,过点A的直线交BD于D,交CE于E;
(1)求证:△ABD∽△ECA;
(2)延长CD交AB于N,延长EB交CA于M,求证:AM=BN.
如图:在△ABC中,BC=2AB=4,AD为边BC上的中线,E、F分别为BC、AB上的动点,且CE=BF,EF与AD交于点G.FH⊥AG于H
(1)①如图1,当∠B=90°时,FG
=
=
EG;GH=
2
2
.
②如图2,当∠B=60°时,FG
=
=
EG;GH=
1
1
.
③如图3,当∠B=α时,FG
=
=
EG;GH=
1
2
AD
1
2
AD
.
请你先填上空,再从以上三个命题中任选择一个进行证明
(2)如图4,若(1)中的点E、F分别在BC、AB的延长线上,试问(1)中的结论是否仍然成立.若成立,请证明你的结论;若不成立,请说明理由.
如图,已知在矩形ABCD中,AD=8cm,CD=4cm,点E从点D出发,沿线段DA以每秒1cm的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2cm的速度移动,当B、E、F三点共线时,两点同时停止运动.设点E移动的时间为t(秒),
(1)求证:△BCF∽△CDE;
(2)求t的取值范围;
(3)连接BE,当t为何值时,∠BEC=∠BFC?
如图,△ABC、△DCE、△FEG是全等的三个等腰三角形,底边BC、CE、EG在同一直线上,且
AB=
3
,BC=1,连接BF交AC、DC、DE分别为P、Q、R.
试证△BFG∽△FEG,并求出BF的长.
如图1,四边形ABCD是矩形,AB=3CB,G是CD边上的一点,且CG=BC.
(1)以CG为一边在矩形ABCD右侧作矩形CEFG,使矩形ABCD≌矩形CEFG;(要求尺规作图,不写作法)
(2)连接BG,DE.试问图中线段BG、线段DE的长度关系及所在直线的位置关系,并说明理由;
(3)将图1中的矩形CEFG绕着点C按逆时针方向旋转任意角度α,得到如
图2,请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.
已知:如图,等边△ABC的边长为6,点D、E分别在AB、AC上,且AD=AE=2,直线l过点A,且l∥BC,若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设F点运动的时间为t秒,当t>0时,直线DF交l于点G,GE的延长线与BC的延长线交于点H,AB与GH相交于点O.
(1)当t为何值时,AG=AE?
(2)请证明△GFH的面积为定值;
(3)当t为何值时,点F和点C是线段BH的三等分点?
如图1,在直角梯形ABCD中,AD∥BC,∠D=90°,AD=9cm,CD=12cm,BC=15cm.点P由点C出发沿CA方向匀速运动,速度为1cm/s;同时,线段EF由AB出发沿AD方向匀速运动,速度为1cm/s,且与AC交于Q点,连接PE,PF.当点P与点Q相遇时,所有运动停止.若设运动时间为t(s).
(1)求AB的长度;
(2)当PE∥CD时,求出t的值;
(3)①设△PEF的面积为S,求S关于t的函数关系式;
②如图2,当△PEF的外接圆圆心O恰在EF的中点时,则t的值为
15
4
15
4
.(直接写出答案)
如图,已知正三角形ABC的边长AB是480毫米.一质点D从点B出发,沿BA方向,以每秒钟10毫米的速度向
点A运动.
(1)建立合适的直角坐标系,用运动时间t(秒)表示点D的坐标;
(2)过点D在三角形ABC的内部作一个矩形DEFG,其中EF在BC边上,G在AC边上.在图中找出点D,使矩形DEFG是正方形(要求所表达的方式能体现出找点D的过程);
(3)过点D、B、C作平行四边形,当t为何值时,由点C、B、D、F组成的平行四边形的面积等于三角形ADC的面积,并求此时点F的坐标.
已知:如图,在△ABC中,E是BC的中点,D在AC边上,若AC长是1,且∠BAC=60°,∠ABC=100°,∠DEC=80°,求S
△ABC
+2S
△CDE
.
第一页
上一页
61
62
63
64
65
下一页
最后一页
1165000
1165002
1165004
1165006
1165008
1165010
1165012
1165013
1165015
1165017