数学
如图,在边长为12个单位的正方形ABCD中,动点P从点B出发,以每秒3个单位的速度沿正方形的边按B→C→D→A运动;动点Q同时从点C出发,以每秒2个单位的速度沿正方形的边按C→D→A运动,到达点A后停止运动,设运动时间为t(秒);
(1)直接写出:当t的取值在什么范围时,点P、点Q在正方形的同一条边上运动?
(2)若点P在BC边上运动,且AP=AQ,试求t的值;
(3)在整个运动过程中(不包括起点),要使△APQ是直角三角形,试求出所有符合条件的t的值.
如图,在直角梯形ABCD中,AD∥BC,∠A=∠B=90°,AD=1,AB=5,BC=4,点P是线段AB上一个动点,
点E是CD的中点,延长PE至F,使EF=PE.
(1)判定四边形PCFD的形状;
(2)当AP的长为何值时,四边形PCFD是矩形;
(3)求四边形PCFD的周长的最小值.
已知:如图,等边三角形ABC的边长为6,点D,E分别在边AB,AC上,且AD=AE=2.若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设点F运动的时间为t秒.当t>0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O.
(1)设△EGA的面积为S,写出S与t的函数关系式;
(2)当t为何值时,AB⊥GH.
如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连接AB.点P从点B出发,以每秒4个单位长度的速度沿BC的方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于点D,作
DE⊥AC于点E.F为射线CB上一点,使得∠CEF=∠ABC.设点P运动的时间为x秒.
(1)用含有x的代数式表示CE的长.
(2)求点F与点B重合时x的值.
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.
将一副三角板,按下列要求摆放:
(1)如图1.固定等腰直角三角板ABC,AO⊥BC,点O为垂足,另一个直角三角板DEF的直角顶点D与点O重合.现让三角板DEF绕点O旋转,保证DF,DE分别交AB、AC于点M、N.试探求AN:BM的值.
(2)交换两块三角板的位置(如图2).固定直角三角板ABC,AO⊥BC,点O为垂足,另一个等腰直角三角板DEF的直角顶点D于点O重合,DF、DE分别交AB、AC于点M、N,AN:BM的值又会如何变化?
(3)通过上述操作与探求,试想如果将三角板换成任意直角三角形,那么AN:BM的值有规律可循吗?
如图1,在等腰△ABC中,AB=AC=a,P为底边BC上任一点,过P作PE∥AC交AB于E,PF∥AB交AC于F,
(1)求证:PE+PF=a;
(2)若将上述等腰△ABC改为等腰梯形ABCD(如图2),其中AD∥BC,AB=CD,AC与BD交于点O,P为BC边上任一点,PF∥BD交DC于F,PE∥AC交AB于E,设梯形的对角线长为a,则(1)中的结论是否还成立,并说明理由.
如图,在△ABC中,点D为AC上一点,延长AB至点E,连结DE,使∠ABC=∠ADE.
求证:AB·AE=AC·AD.
已知:如图,在菱形ABC中,点E、F分别在边BC、CD上,BE=DF,AE与BD交于点M,AF与BD交于点N.
(1)求证:∠BAF=∠DAE;
(2)若AD=5,DF=3,求:
BM
BD
的值.
如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BE⊥PB交x轴于点E,连接PE交AB于点F,设运动时间为t秒.
(1)当t=2时,求点E的坐标;
(2)若AB平分∠EBP时,求t的值;
(3)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.
矩形OABC在直角坐标系中如图所示,A(5,0),C(0,4),点D在O
A上,且BD=OA.
(1)求点D的坐标;
(2)现有两个动点P、Q分别从点B和点O同时出发,其中点P以每秒1个单位的速度,沿BA向终点A移动;点Q以每秒1.25个单位的速度沿OA向终点A移动.过点P作PE∥OA交BD于点E,连接EQ.设动点运动时间为x秒.当点Q在0A(不包括点O、D、A)上移动时,设△EDQ的面积为y,求y与x的函数关系式,并写出自变量x的取值范围.
第一页
上一页
54
55
56
57
58
下一页
最后一页
1164858
1164862
1164864
1164866
1164868
1164870
1164872
1164874
1164876
1164878