数学
(2013·徐州模拟)已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.
(1)结合以上信息及图2填空:图2中的m=
2
5
2
5
;
(2)求B、C两点的坐标及图2中OF的长;
(3)若OM是∠AOB的角平分线,且点G与点H分别是线段AO与射线OM上的两个动点,直接写出HG+AH的最小值,请在图3中画出示意图并简述理由.
(2013·秀洲区二模)如图①,平面直角坐标系中,直线
y=
3
3
x+3
分别交x轴、y轴于点A、B,OC⊥AB于点C,D是AB的中点.动点P从A出发沿折线AD→DO方向以每秒1个单位长度的速度向终点O运动,同时动点Q从点D出发沿折线DO→OB方向以相同的速度运动.设点P的运动时间为t秒,当点P到达O点时P、Q同时停止运动.
(1)求OD的长;
(2)当点P在AD上运动时,设△DPQ的面积为S,求S关于t的函数关系式,并求出S的最大值;
(3)如图②,当点P在DO上、点Q在OB上运动时,PQ与OC交于点E,当t为何值时,△OPE为等腰三角形?
(2013·莘县模拟)如图,已知直线y=-
3
4
x上一点B,由点B分别向x轴、y轴作垂线,垂足为A、C,若A点的坐标为(0,5).
(1)若点B也在一反比例函数的图象上,求出此反比例函数的表达式.
(2)若将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,求点E的坐标.
(2013·下城区二模)已知在平面直角坐标系中,点A,B的坐标分别为A(2,-5),B(5,1).在同一个坐标系内画出满足下列条件的点(保留画图痕迹),并求出该点的坐标.
(1)在y轴上找一点C,使得AC+BC的值最小;
(2)在x轴上找一点D,使得AD-BD的值最大.
(2013·同安区一模)如图,在直角坐标系中,边长为2的正方形OABC的两边分别在x 轴和y轴上,直线L经过点O并将正方形分为两部分,它们的面积之比为m (m<1).
(1)当m=
1
2
时,求直线L与正方形相交的另一交点坐标;
(2)若直线L的解析式为y=kx且k=m+1,直线L与正方形的另一个交点为E,点P在线段OE上(不含两端点),记
W=-
S
△PAB
S
△POA
,求W的取值范围.
(2013·南岗区一模)如图1,在平面直角坐标系中,点0为坐标原点,点A在y轴的正半轴上,点C在x轴的正半轴上,矩形AOCB的对角线OB所在的直线的解析式为
y=
1
2
x
,且0B=
4
5
.
(1)求B点坐标.
(2)如图2,点M是OC中点,动点D在线段OM上运动(不与0、M两点重合),点E在边AB上,且AD=DE,点F在射线DE上,且AF=AD,设∠FAE=m°,∠OAD=n°,求出m与n之间的函数关系式,并直接写出自变量n的取值范围;
(3)如图3,在(2)的条件下,连接BF,若∠DFB=90°,求n的值.
(2013·门头沟区一模)操作与探究:
在平面直角坐标系xOy中,点P从原点O出发,且点P只能每次向上平移2个单位长度或向右平移1个单位长度.
(1)实验操作:在平面直角坐标系xOy中,点P从原点O出发,平移1次后可能到达的点的坐标是(0,2),(1,0);点P从原点O出发,平移2次后可能到达的点的坐标是(0,4),(1,2),(2,0);点P从原点O出发,平移3次后可能到达的点的坐标是
(0,6),(1,4),(2,2),(3,0)
(0,6),(1,4),(2,2),(3,0)
;
(2)观察发现:
任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数y=-2x+2的图象上;平移2次后在函数y=-2x+4的图象上,….若点P平移5次后可能到达的点恰好在直线y=3x上,则点P的坐标是
(2,6)
(2,6)
;
(3)探究运用:
点P从原点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于30,不超过32,求点Q的坐标.
(2013·门头沟区二模)如图,在平面直角坐标系xOy中,已知矩形ABCD的两个顶点B、C的坐标分别是B(1,0)、C(3,0).直线AC与y轴交于点G(0,6).动点P从点A出发,沿线段AB向点B运动.同时动点 Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)求直线AC的解析式;
(2)当t为何值时,△CQE的面积最大?最大值为多少?
(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使得以C、Q、E、H为顶点的四边形是菱形?
(2013·连云港模拟)如图,平面直角坐标系中,直线y=-
4
3
x+8分别交x轴、y轴于点B、点A,点D从点A出发沿射线AB方向以每秒1个单位长的速度匀速运动,同时点E从点B出发沿射线BC方向以每秒
3
5
个单位长的速度匀速运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥AO于点F,连接DE、EF
(1)当t为何值时,△BDE与△BAO相似;
(2)写出以点D、F、E、O为顶点的四边形面积s与运动时间t之间的函数关系;
(3)是否存在这样一个时刻,此时以点D、F、E、B为顶点的四边形是菱形?如果存在,求出相应的t的值;如果不存在,请说明理由.
(2013·江西模拟)如图1,在平面直角坐标中,直角梯形OABC的顶点A的坐标为(4,0),直线y=-
1
4
x+3经过顶点B,与y轴交于顶点C,AB∥OC.
(1)求顶点B的坐标;
(2)如图2,直线l经过点C,与直线AB交于点M,点O′为点O关于直线l的对称点,连接CO′,并延长交直线AB于第一象限的点D,当CD=5时,求直线l的解析式;
(3)在(2)的条件下,点P在直线l上运动,点Q在直线OD上运动,以P、Q、B、C为顶点的四边形能否成为平行四边形?若能,求出点P的坐标;若不能,说明理由.
第一页
上一页
23
24
25
26
27
下一页
最后一页
1023440
1023441
1023443
1023446
1023448
1023450
1023452
1023454
1023456
1023459