数学
如图(1),以梯形OABC的顶点O为原点,底边OA所在的直线为轴建立直角坐标系.梯形其它三个顶点坐标分别为:A(14,0),B(11,4),C(3,4),点E以每秒2个单位的速度从O点出发沿射线OA向A点运动,同时点F以每秒3个单位的速度,从O点出发沿折线OCB向B运动,设运动时间为t.
(1)当t=4秒时,判断四边形COEB是什么样的四边形?
(2)当t为何值时,四边形COEF是直角梯形?
(3)在运动过程中,四边形COEF能否成为一个菱形?若能,请求出t的值;若不能,请简要说明理由,并改变E、F两点中任一个点的运动速度,使E、F运动到某时刻时,四边形COEF是菱形,并写出改变后的速度及t的值
如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,AC、BD交于F,过点F作EF∥AB,交AD于点E.求证:四边形ABFE为等腰梯形.
已知正方形ABCD中,E、F分别是对角线AC、BD的三等分点
(1)求证:四边形BCFE是等腰梯形;
(2)若正方形ABCD的对角线长为9cm,求等腰梯形BCFE的面积.
在正方形ABCD的对角线AC上截取一点E,使CE=CD.然后以ED所在的直线为对称轴作△ADE的轴对称图形△FDE,DF与AC交于G点.
(1)求证:四边形CDEF为等腰梯形.
(2)将正方形ABCD拉成菱形,如继续按(1)中方法作图,让E点还在对角线AC上,且不与A、C两顶点重合,问(1)中结论是否继续成立?如成立,试说明理由.
如图,梯形ABCD中,AD∥BC,E是AD的中点,且EB=EC.
求证:梯形ABCD是等腰梯形.
(要求写出证明过程中的主要依据)
如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心作⊙O,分别与∠EPF两边相交于A、B和C、D,连接OA,此时有OA∥PE.
(1)求证:AP=AO;
(2)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,那么请你直接写出能构成菱形的四边形和能构成等腰梯形的四边形(注意:不要漏掉呀!).
如图,在Rt△ABC中,∠ABC=90°,D是斜边AC的中点,DE⊥AB,垂足为E,EF∥DB交CB的延长线于点F,猜想:四边形CDEF是怎样的特殊四边形?试对你猜想的结论说明理由.
如图,在·ABCD中,∠BAD、∠BCD的平分线分别交BC、AD于点E、F,AE、DC的延长线交于点G,试说明四边形AFCG为等腰梯形.
如图,在梯形ABCD中,AD∥BC,∠B=∠C,E是BC边的中点.请你探索线段AE与DE间的数量关系,并说明理由.
如图,AB=AC,过点A的直线DE∥CB,且CD⊥AC,BE⊥AB.梯形BCDE是等腰梯形吗?为什么?
第一页
上一页
90
91
92
93
94
下一页
最后一页
1018401
1018402
1018403
1018405
1018407
1018408
1018410
1018411
1018412
1018413