试题
题目:
如图,梯形ABCD中,AD∥BC,E是AD的中点,且EB=EC.
求证:梯形ABCD是等腰梯形.
(要求写出证明过程中的主要依据)
答案
证明:∵EB=EC,
∴∠EBC=∠ECB
∵AD∥BC,
∴∠EBC=∠AEB,∠ECB=∠DEC,
∴∠AEB=∠DEC
在△AEB和△DEC中,∠AEB=∠DEC,AE=DE,EB=EC,
∴△AEB≌△DEC
∴AB=DC,即ABCD是等腰梯形
证明:∵EB=EC,
∴∠EBC=∠ECB
∵AD∥BC,
∴∠EBC=∠AEB,∠ECB=∠DEC,
∴∠AEB=∠DEC
在△AEB和△DEC中,∠AEB=∠DEC,AE=DE,EB=EC,
∴△AEB≌△DEC
∴AB=DC,即ABCD是等腰梯形
考点梳理
考点
分析
点评
专题
等腰梯形的判定.
要证明ABCD是等腰梯形,就得证AB=DC,由已知AD∥BC,EB=EC,推出∠EBC=∠ECB,∠EBC=∠AEB,∠ECB=∠DEC,相继推出∠AEB=∠DEC,E是AD的中点可推出AE=DE,已知EB=EC,所以得△AEB≌△DEC,即得AB=DC,得证.
此题考查的知识点是等腰梯形的判定和全等三角形的判定和性质,解答此题的关键是首先由已知证△AEB≌△DEC然后可得结论.
证明题.
找相似题
(2013·绵阳)下列说法正确的是( )
(2011·眉山)下列命题中,假命题是( )
(2007·天门)如图,四边形ABCD中,AB∥CD.则下列说法中,不正确的是( )
(2003·仙桃)如图,线段AC,BD相交于点O,欲使四边形ABCD成为等腰梯形,应满足的条件是( )
(1999·武汉)下列命题中,真命题是( )