数学
如图1所示,在等腰Rt△ABC中,点M是斜边AB中点,D是AB边上一动点,ED⊥CD于点D,EF⊥AB交AB于点F,且CD=ED.
(1)求证:AC=
2
DF;
(2)如图2所示,若ED⊥CD于点D,且ED=CD,点E在AC的左侧,其它条件不变,连接AE,求证:AE∥BC;
(3)在(2)中,若AD=
3
,则BC-AE=
6
6
.(直接写出结果即可,不书写解答过程)
如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,延长BF交AC于E,
(1)试说明:△FBD≌△ACD;
(2)试说明:△ABC是等腰三角形;
(3)试说明:CE=
1
2
BF.
如图在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,CD=4cm.求AC的长是多少厘米.
如图,在△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于点D.问能否在AB上确定一点E,使△BDE的周长等于AB的长?若能请作出E点,并给出证明;若不能,请说明理由.
如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB上一点.
(1)求证:△ACE≌△BCD;
(2)设AD=b,BD=a,且AC=
5
,DE=
6
,求ab的值.
已知△ABC为等腰直角三角形,∠A=90°,AB=AC,D为BC的中点,E为AB上一点,BE=12,F为AC上一点,FC=5,且∠EDF=90°,求EF的长度.
如图,在四个正方形拼接成的图形中,以A
1
、A
2
、A
3
、…、A
10
这十个点中任意三点为顶点,共能组成多少个等腰直角三角形?你愿意把得到上述结论的探究方法与他人交流吗?若愿意,请简要写出你的探究过程.
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.
(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;
(2)如图2,当θ=45°时,设A′C与AB交于点P,求
CP
BP
的值.
操作:在△ABC中,AC=BC=4,∠C=90°,将一块直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况.
探究:(1)如图①,PD⊥AC于D,PE⊥BC于E,则重叠部分四边形DCEP的面积为
4
4
,周长
8
8
.
(2)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②加以证明.
(3)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.
如图,在等腰Rt△ABC中,D是斜边BC的中点,以D为顶点的直角的两边分别与边AB,AC交于点E,F.当∠EDF绕顶点D旋转时(点E不与A,B重合),试判断DE与DF的数量关系,并证明.
第一页
上一页
117
118
119
120
121
下一页
最后一页
1063700
1063701
1063704
1063707
1063708
1063711
1063713
1063717
1063719
1063721