试题

题目:
青果学院如图,在等腰Rt△ABC中,D是斜边BC的中点,以D为顶点的直角的两边分别与边AB,AC交于点E,F.当∠EDF绕顶点D旋转时(点E不与A,B重合),试判断DE与DF的数量关系,并证明.
答案
青果学院解:DF=DE,
理由:∵Rt△ABC是等腰三角形,
∴∠C=∠B=45°,
∴D是斜边BC的中点,
∴∠DAB=∠DAC=
1
2
∠BAC=45°,AD⊥BC,
∴AD=DC,
∵∠EDF=90°,
∴∠ADF+∠ADE=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠ADF+∠FDC=90°,
∴∠ADE=∠FDC,
在△ADE和△CDF中,
∠EAD=∠C
AD=DC
∠ADE=∠FDC

∴△AED≌△CFD(ASA),
∴DF=DE.
青果学院解:DF=DE,
理由:∵Rt△ABC是等腰三角形,
∴∠C=∠B=45°,
∴D是斜边BC的中点,
∴∠DAB=∠DAC=
1
2
∠BAC=45°,AD⊥BC,
∴AD=DC,
∵∠EDF=90°,
∴∠ADF+∠ADE=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠ADF+∠FDC=90°,
∴∠ADE=∠FDC,
在△ADE和△CDF中,
∠EAD=∠C
AD=DC
∠ADE=∠FDC

∴△AED≌△CFD(ASA),
∴DF=DE.
考点梳理
全等三角形的判定与性质;等腰直角三角形.
首先根据等腰三角形的性质可得∠DAB=∠DAC=
1
2
∠BAC,AD⊥BC,再证明∠C=∠B=45°,∠ADE=∠FDC,AD=DC可以利用ASA定理证明△AED≌△CFD,进而得到DE=DF.
此题主要考查了全等三角形的判定与性质,关键是掌握证明三角形全等是证明角相等,线段相等的重要方法.
找相似题