数学
如图,已知D为等边三角形纸片ABC的边AB上的点,过点D作DG∥BC交AC于点G,DE⊥BC于点E,过点G作GF⊥BC于点F.把三角形纸片ABC分别沿DG,DE,GF按图示方式折叠,则图中阴影部分是
等边
等边
三角形.
如图,已知△ABC是等边三角形,AD∥BC,CD⊥AD,垂足为D,E为AC的中点,AD=DE=6cm.则∠ACD=
30
30
°,AC=
12
12
cm,∠DAC=
60
60
°,△ADE是
等边
等边
三角形.
如图所示,等边三角形ABC,点D为其内部一点,△BDC旋转后与△AEC重合,请判断△DCE的形状为
等边三角形
等边三角形
.
由6条长度均为2cm的线段可构成边长为2cm的n个正三角形,则n的最大值为
4
4
.
(2008·朝阳区二模)已知:在等边△ABC中,点D、E、F分别为边AB、BC、AC的中点,点G为直线BC上一动点,当点G在CB延长线上时,有结论“在直线EF上存在一点H,使得△DGH是等边三角形”成立(如图①),且当点G与点B、E、C重合时,该结论也一定成立.
问题:当点G在直线BC的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.
(2006·上海模拟)如图,在Rt△ABC中,已知∠ACB=90°,∠A=30°,BC=4.以点C为旋转中心把△ABC旋转到△A′B′C,点B在边A′B′上,边A′C与边AB相交于点D.求△ABC与△A′B′C重叠部分的面积.
已知:在△AOB和△COD中,OA=OB,OC=OD.
(1)如图①,若∠AOB=∠COD=60°,求证:①AC=BD ②∠APB=60°.
(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为
AC=BD
AC=BD
,∠APB的大小为
α
α
(直接写出结果,不证明)
如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形.
(1)求证:AE=BD;
(2)若AE交CD于M,BD交CE于N,连接MN,试判断△MCN的形状,并说明理由.
如图,△ABP中,∠APB=∠α,把△ABP绕点A逆时针旋转60°后得到△ACE.连结BC、PE、PC,测量得∠BPC=100°.
(1)请找出图中的两个等边三角形:
△ABC,△APE
△ABC,△APE
(不再添加其它点或线)
(2)若∠α=150°,试判断△PEC的形状,并说明你的理由;
(3)若△CPE为等腰三角形,求∠α的度数.
如图,在△ABC中,D,E在直线BC上.
(1)若AB=BC=AC=CE=BD,求∠EAC的度数;
(2)若AB=AC=CE=BD,∠DAE=100°,求∠EAC的度数.
第一页
上一页
5
6
7
8
9
下一页
最后一页
968209
968210
968211
968212
968519
968521
968523
968524
968528
968531