试题
题目:
如图,已知△ABC是等边三角形,AD∥BC,CD⊥AD,垂足为D,E为AC的中点,AD=DE=6cm.则∠ACD=
30
30
°,AC=
12
12
cm,∠DAC=
60
60
°,△ADE是
等边
等边
三角形.
答案
30
12
60
等边
解:∵AD∥BC,CD⊥AD,
∴∠BCD=90°,
又∵∠ACB=60°,
∴∠ACD=90°-60°=30°,
∵AD=DE=6cm,∠DAE=∠ACB=60°,
∴△DAE是等边三角形,
∴AE=AD=6,
∴AC=2AE=12.
∵AD∥BC,△ABC是等边三角形,
∴∠DAC=∠ACB=60°,
∵AD=DE,
∴△ADE是等边三角形.
故答案为:30,12,60,等边.
考点梳理
考点
分析
点评
专题
等边三角形的判定与性质.
根据等边三角形的性质,由于AD∥BC,CD⊥AD,可得△DAE是等边三角形,由此即可得出其它答案.
本题考查了等边三角形的判定与性质,难度不大,关键证明△DAE是全等三角形.
计算题.
找相似题
如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是( )
如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( )
如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )
如图,已知点P是线段AB上一动点(不与端点A,B重合),△APC和△PBD都是等边三角形,连接AD、BC交于点I,并与PC、PD交于点E、F,则有下列结论:①AD=BC;②等边△PEF;③∠CID=120°;④∠ECF=∠EDF,其中正确的有( )
在四边形ABCD中,∠DAB=∠CBA,∠CDA=90°,∠BCD=78°,AB=2AD,则∠CAD的度数为( )