数学
如图所示,正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系.圆心为A(3,0)的⊙A被y轴截得的弦长BC=8.解答下列问题:
(1)OA的半径为
5
5
;
(2)请在图中将OA先向上平移6个单位,再向左平移8个单位得到⊙D,观察你所画的图形知⊙D的圆心D点的坐标是
(-5,6)
(-5,6)
;⊙D与x轴的位置关系是
相离
相离
;⊙D与y轴的位置关系是
相切
相切
;⊙D与⊙A的位置关系是
外切
外切
.
已知关于x的方程x
2
-(k+1)x+(2k-2)=0.
(1)求证:无论k取何值,此方程总有实根;
(2)若两⊙O
1
、⊙O
2
相切,O
1
O
2
=5,且两圆半径r
1
、r
2
恰好是此方程的两根,求k的值.
设R、r分别为两圆半径,两圆外切时圆心距为5,两圆内切时圆心距为1,求R、r的值?
⊙O的半径为5cm,点P是⊙O外一点,OP=8cm,⊙O和⊙P相切,求⊙P的半径.
已知⊙O
1
与⊙O
2
的半径分别为1和2,且它们的两条公切线互相垂直,则圆心距O
1
O
2
的长为
3
2
或
2
或
10
3
2
或
2
或
10
.
已知⊙O
1
和⊙O
2
相切,⊙O
1
的半径为3,⊙O
2
的半径为2,则O
1
O
2
=
5或1
5或1
.
(2008·临夏州)请你类比一条直线和一个圆的三种位置关系,在图,在①、②、③中,分别各画出一条直线,使它与两个圆都相离、都相切、都相交,并在图④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系.
(2007·黄冈)张宇同学是一名天文爱好者,他通过查阅资料得知:地球、火星的运行轨道可以近似地看成是以太阳为圆的两个同心圆,且这两个同心圆在同一平面上(如图所示).由于地球和火星的运行速度不同,所以二者的位置不断发生变化.当地球、太阳和火星三者处在一条直线上,且太阳位于地球、火星中间时,称为“合”;当地球、太阳和火星三者处在一条直线上,且地球于太阳与火星中间时,称为“冲”.另外,从地球上看火星与太阳,当两条视线互相垂直时,分别称为“东方照”和“西方照”.已知地球距太阳15(千万千米),火星距太阳20.5(千万千米).
(1)分别求“合”、“冲”、“东方照”、“西方照”时,地球与火星的距离(结果保留准确值);
(2)如果从地球上发射宇宙飞船登上火星,为了节省燃料,应选择在什么位置时发射较好,说明
你的理由.
(注:从地球上看火星,火星在地球左、右两侧时分别叫做“东方照”、“西方照”.)
(2006·上海)已知点P在线段AB上,点O在线段AB延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.
(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;
(2)如果AP=m(m是常数,且m>1),BP=1,OP是OA,OB的比例中项.当点C在圆O上运动时,求AC:BC的值(结果用含m的式子表示);
(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.
(2005·辽宁)如图,⊙C经过坐标原点O,分别交x轴正半轴、y轴正半轴于点B、A,点B的坐标为(4
3
,0),点M在⊙C上,并且∠BMO=120度.
(1)求直线AB的解析式;
(2)若点P是⊙C上的点,过点P作⊙C的切线PN,若∠NPB=30°,求点P的坐标;
(3)若点D是⊙C上任意一点,以B为圆心,BD为半径作⊙B,并且BD的长为正整数.
①问这样的圆有几个?它们与⊙C有怎样的位置关系?
②在这些圆中,是否存在与⊙C所交的弧(指⊙B上的一条弧)为90°的弧,若存在,请给
出证明;若不存在,请说明理由.
第一页
上一页
8
9
10
11
12
下一页
最后一页
922673
922674
922675
922676
922677
922678
922679
922680
922681
922682