数学
已知:如图,在Rt△ABC中,∠C=90°,有一内接正方形DEFC,连接AF交DE于G,若AC=15,BC=10.
(1)求正方形DEFC的边长;(2)求EG的长.
已知:如图,梯形ABCD中,AD∥BC,AC与BD相交于O点,过点B作BE∥CD交CA的延长线于点E.
求证:(1)△OBE∽△ODC;
(2)OC
2
=OA·OE.
如图,已知:AB=AC,BD=CD,E为AD上一点,求证:
(1)△ABD∽△ACD;
(2)∠BED=∠CED.
如图:四边形ABCD中,对角线AC、BD相交于点M,且AC⊥AB,BD⊥CD,过点A作AE⊥BC,垂足为E,交BD于点F.
求证:(1)△AMB∽△DMC;
(2)AB
2
=BF·BD.
如图,△ABC是等边三角形,∠DAE=120°,求证:(1)△ABD∽△ECA;(2)BC
2
=DB·CE.
如图:已知∠ACD=∠B,
求证:(1)△ABC∽△ACD
(2)AC
2
=AD·AB.
在△ABC中,AB=6cm,AC=12cm,动点D以1cm/s 的速度从点A出发到点B止,动点E以2cm/s 的速度从点C出发到点A止,且两点同时运动,当以点A、D、E为顶点的三角形与△ABC相似时,求运动的时间t.
如图所示,矩形ABCD中,AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、MN、FN,过△FMN三边的中点作△PQW.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4.试问x为何值时,△PQW为直角三角形?
(3)试用含的代数式表示MN
2
,并求当x为何值时,MN
2
最小?求此时MN
2
的值.
如图:AB是⊙O的直径,AC是⊙O上一条弦,AC在AB下方,在⊙O上存在一点D.
(1)(如图a),当D点在O点在正上方,连接AD、CD、BC、BD,CD交AB于E,则,在图中你可以发现多少对相似三角形?请列举出来,并说明理由.
(2)①(如图b),当D点在劣弧
BC
上运动(不与B、C重合)则AD
>
>
AC(在横线上填写“>”、“<”或“=”)并说明理由;
②(如图c),当D点在劣弧
AC
上运动(不与A、C重合)则AD
<
<
AC(在横线上填写“>”、“<”或“=”)并说明理由;
(3)如图d,以B点为原点,AB所在的直线为x轴,建立平面直角坐标系,∠DCA=∠CBA=60°,连接BD,过C点作CE∥DB,求证:四边形CDBE为平行四边形.
如图,已知△ABC的两边AB、AC的中点分别为M、N.
求证:MN∥BC,且MN=
1
2
BC.
第一页
上一页
127
128
129
130
131
下一页
最后一页
910834
910835
910836
910837
910838
910839
910840
910841
910842
910843