数学
如图,将在Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,连接BE,延长DE、BC相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.
(1)判断△ABE的形状,并证明你的结论;
(2)用含b代数式表示四边形ABFE的面积;
(3)求证:a
2
+b
2
=c
2
.
我们运用图(I)图中大正方形的面积可表示为(a+b)
2
,也可表示为c
2
+4×
1
2
ab,即(a+b)
2
=c
2
+4×
1
2
ab由此推导出一个重要的结论a
2
+b
2
=c
2
,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.
(1)请你用图(Ⅱ)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).
(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+y)
2
=x
2
+2xy+y
2
(3)现有足够多的边长为x的小正方形,边长为y的大正方形以及长为x宽为y的长方形,请你自己设计图形的组合,用其面积表达式验证:(x+y)(x+2y)=x
2
+3xy+2y
2
.
由两个边长分别为a、b、c的直角三角形和一个两条直角边为c的直角三角形可以拼凑成一个新的图形,如图所示:
(1)请你用两种不同的方法分别计算所得的新图形的面积,然后再比较二者的结果,看看你能发现什么公式?
(2)若上述直角三角形的边a、b的长度分别为a=4,b=3,请你运用“你发现的公式”求出边c的长度.
观察探究:
小明同学非常细心,火柴盒在桌面上倒下,便启迪他得到很多发现.如图,火柴盒的一个侧面ABCD逆时针方向倒下后到AB′C′D′的位置,连接CC′.设AB=b,BC=a,AC=c.
(1)他在学习了因式分解后,意外地发现,代数式a
2
-b
2
表示了图中一个长方形的面积,请你把这个长方形画完整,并把它指出来;
(2)学过勾股定理之后,他又惊奇地发现,利用四边形BCC′D′的面积可以得到证明勾股定理的新方法,请你利用这个四边形的面积证明勾股定理:a
2
+b
2
=c
2
.
如图是用硬纸板做成的四个全等的直角三角形(两直角边长分别是a,b,斜边长为c)和一个边长为c的正方形,请你将它们拼成一个能证明勾股定理的图形,并利用此图形证明勾股定理.
如图,是4个完全相同的直角三角形适当拼接后形成的图形,这些直角三角形的两直角边分别为a、b,斜边为c.你能利用这个图形验证勾股定理吗?
已知(如图):
用四块底为b、高为a、斜边为c的直角三角形拼成一个正方形,求图形中央的小正方形的面积,你不难找到:
解法(1)小正方形的面积=
c
2
-2ab
c
2
-2ab
;
解法(2)小正方形的面积=
b
2
-2ab+a
2
b
2
-2ab+a
2
;
由解法(1)、(2),可以得到a、b、c的关系为:
c
2
=a
2
+b
2
c
2
=a
2
+b
2
.
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,试求:(a+b)
2
的值.
做8个全等的直角三角形(2条直角边长分别为a、b,斜边长为c),再做3个边长分别为a、b、c的正方形,把它们拼成2个正方形(如图)你能利用这2个图形验证勾股定理吗?写出你的验证过程.
如图,是用硬纸版作成的两个小直角三角形和一个大直角三角形,两个小直角三角形直角边长分别为a和b,斜边为c,大直角三角形直角边都为c,请你动动脑筋,将它们拼成一个能证明勾股定理的图形.
(1)画出所拼图形的示意图,说出图形的名称.
(2)用这个图形证明勾股定理.
第一页
上一页
163
164
165
166
167
下一页
最后一页
577423
577424
577425
577426
577427
577428
577429
577430
577431
577432