数学
(2012·昆山市一模)某书店正在销售一种课外读本,进价12元/本,售价20元/本,为了促销,书店决定凡是一次购买10本以上的客户,每多买一本,售价就降低0.10元,但最低价为16元/本.
(1)客户一次至少买多少本,才能以最低价购买?
(2)求当一次购买x本时(x>10),书店利润y(元)与购买量x(本)之间的函数关系式;
(3)在销售过程中,书店发现卖出50本比卖出46本赚的钱少,为了使每次的销售均能达到多卖出就多获利,在其他促销条件不变的情况下,最低价应确定为多少元/本?请说明理由.
(2012·锦州二模)为迎接锦州市2013世界园林博览会,我市准备将某路段路灯更换为太阳能路灯.已知太阳能路灯单价为5500元/个,现有两个商家经销此产品.甲商家一律按原价的80%销售;乙商家用如下方法促销:若购买路灯不超过150个,按原价付款;若一次购买150个以上,且购买的个数每增加一个,其单价减少10元,但太阳能路灯的售价不得低于4000元/个.现设购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y
1
元;如果全部在乙商家购买,则所需金额为y
2
元.
(1)分别求出y
1
、y
2
与x之间的函数关系;
(2)若市政府投资154万元,应选择哪个商家购买,最多能购买多少个太阳能路灯?
(2012·江岸区模拟)某超市销售某种品牌啤酒,已知进价为每箱45元.市场调查发现:若每箱以60元销售,平均每天可销售40箱,价格每降低1元,平均每天多销售10箱,但销售价必须高于45元,设每箱降价x元(x为整数).
(1)写出每天销售y(箱 )与x之间的关系式,以及x的取值范围;
(2)若超市每天的利润记为w元,求第一天超市盈利最大时啤酒的售价;
(3)在第一天利润最大的条件下,第二天超市做活动,重新确定啤酒售价,为确保第一、二两天的总盈利不低于1740元,请借助图象说明,第二天应该如何定啤酒的售价?
(2012·集美区一模)如图,O为坐标原点,小明在运动场练习踢足球,足球在点O处飞出,落在点B处,已知足球经过的路线是抛物线
y=-
1
10
x
2
+(m-1)x
(1)若足球飞行的水平距离OB为8米,求m的值;
(2)若抛物线的对称轴位于直线x=5的右侧,求足球飞行的水平距离OB会大于多少米?
(2012·黄冈模拟)某公司生产一种健身自行车在市场上受到普遍欢迎,在国内市场和国外市场畅销,生产的产品可以全部出售,该公司的年生产能力为10万辆,在国内市场每辆的利润y
1
(元)与其销量x(万辆)的关系如图所示;在国外市场每辆的利润y
2
(元)与其销量x(万辆)的关系为:y
2
=
-30x+320(0≤x≤6)
180(6≤x≤10)
.
(1)求国内市场的销售总利润z
1
(万元)与其销量x(万辆)之间的函数关系式,并指出自变量的取值范围.
(2)求国外市场的销售总利润z
2
(万元)与国内市场的销量x(万辆)之间的函数关系式,并指出自变量的取值范围.
(3)求该公司每年的总利润w(万元)与国内市场的销量x(万辆)之间的函数关系式?并帮助该
公司确定国内、国外市场的销量各为多少万辆时,该公司的年利润最大?
(2012·黄陂区模拟)春节前期,某超市出售某种进价为每千克110元的开心果.调查发现,若每千克以130元的价格出售,平均每天销售这种开心果30千克,销售价格每降低1元,平均每天可多销售20千克(售价不得低于115元/千克).设每千克降低售价x元(x为正整数),每天的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每千克开心果的售价定为多少元时,每天可获得最大利润?每天获得的最大利润是多少?
(3)若每天销售这种开心果的利润不低于1 950元,则销售价应在什么范围?
(2012·合川区模拟)某地出产一种特色蔬菜,为了扩大生产规模,该地决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元,随着补贴数额的不断增大,生产规模也不断增加,但每亩蔬菜的收益会相应降低.经调查,种植亩数y(亩)和每亩蔬菜的收益z(元)与补贴数额x(元)之间均为一次函数关系,其对应值如表:
x(元)
0
100
200
300
…
y(亩)
400
600
800
1000
…
z(元)
2400
2100
1800
1500
…
(1)在政府出台补贴措施前,该地种植这种蔬菜的总收益为多少?
(2)政府出台补贴措施后,要使该地这种蔬菜的总收益w(元)最大,政府应该将每亩补贴数额x定为多少元?并求出总收益w的最大值和此时种植亩数.
(3)若该地今年刚好取得最大总收益,为提高菜农的经济收入,农业部门通过对种子的技术改良,每亩收益将逐步提高,计划每年一亩今年、明年、后年三年共收益5460元,求明年、后年平均每年提高的百分率.
(2012·海曙区模拟)重庆市垫江县具有2000多年的牡丹种植历史.每年3月下旬至4月上旬,主要分布在该县太平镇、澄溪镇明月山一带的牡丹迎春怒放,美不胜收.由于牡丹之根---丹皮是重要中药材,目前已种植有60多个品种2万余亩牡丹的垫江,因此成为我国丹皮出口基地,获得“丹皮之乡”的美誉.为了提高农户收入,该县决定在现有基础上开荒种植牡丹并实行政府补贴,规定每新种植一亩牡丹一次性补贴农户若干元,经调查,种植亩数y(亩)与补贴数额x(元)之间成一次函数关系,且补贴与种植情况如下表:
补贴数额(元)
10
20
…
种植亩数(亩)
160
240
…
随着补贴数额x的不断增大,种植规模也不断增加,但每亩牡丹的收益z(元)会相应降低,且该县补贴政策实施前每亩牡丹的收益为3000元,而每补贴10元(补贴数为10元的整数倍),每亩牡丹的收益会相应减少30元.
(1)分别求出政府补贴政策实施后,种植亩数y(亩)、每亩牡丹的收益z(元)与政府补贴数额x(元)之间的函数关系式;
(2)要使全县新种植的牡丹总收益W(元)最大,又要从政府的角度出发,政府应将每亩补贴数额x定为多少元?并求出总收益W的最大值和此时种植亩数;(总收益=每亩收益×亩数)
(3)在(2)问中取得最大总收益的情况下,为了发展旅游业,需占用其中不超过50亩的新种牡丹园,利用其树间空地种植刚由国际牡丹园培育出的“黑桃皇后”.已知引进该新品种平均每亩的费用为530元,此外还要购置其它设备,这项费用(元)等于种植面积(亩)的平方的25倍.这样混种了“黑桃皇后”的这部分土地比原来种植单一品种牡丹时每亩的平均收益增加了2000元,这部分混种土地在扣除所有费用后总收益为85000元.求混种牡丹的土地有多少亩?(结果精确到个位)(参考数据:
2
≈1.414,
3
≈1.732,
5
≈2.236
)
(2012·哈尔滨模拟)为了美化环境,计划将一个边长为4米的菱形草地ABCD分割成如图所示的四块,其中
四边形AEPM和四边形NPFC均为菱形,且∠A=120°,若AE的长为x米,四边形BEPN和四边形DMPF的面积和为S平方米.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据(1)中的函数关系式,计算当x为何值时S最大,并求出最大值.
[参考公式:二次函数y=ax
2
+bx+c(a≠0),当x=-
b
2a
时,y
最大(小)值
=
4ac-
b
2
4a
].
(2012·常州模拟)报刊零售点从报社以每份0.30元买进一种晚报,零售点卖出的价格为0.50元,约定卖不掉的报纸可以退还给报社,退还的钱数y(元)与退还的报纸数量k(份)之间的函数关系式如下:当0≤k<30时,y=-
1
100
k
2
+
3
10
k
;当k≥30时,y=0.02k,现经市场调查发现,在一个月中(按30天记数)有20天可卖出150份/天,有10天只能卖出100份/天,而报社规定每天批发给摊点的报纸的数量必须相同.
(1)若该家报刊摊点每天从报社买进的报纸数x份(满足100<x≤150),月毛利润为W元,求W关于x的函数关系式;
(2)当买进多少报纸时,月毛利润最大?为多少?(注:月毛利润=月总销售额-月总成本)
第一页
上一页
48
49
50
51
52
下一页
最后一页
166717
166718
166719
166720
166721
166722
166723
166724
166725
166726