数学
(2012·朝阳区二模)如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形,M、N分别是CE、CF的中点.
(1)求证:△DMN是等边三角形;
(2)连接EF,Q是EF中点,CP⊥EF于点P.求证:DP=DQ.
同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:
小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.
(2011·深圳模拟)已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.
(1)求证:△MED为等腰三角形;
(2)求证:∠EMD=2∠DAC.
(2010·唐山一模)(1)如图1,以等腰直角△ABC的直角边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,则DE与AM之间的数量关系为
DE=2AM
DE=2AM
;
(2)如图2,以任意直角△ABC的直角边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,则DE与AM之间的数量关系为
DE=2AM
DE=2AM
;
(3)如图3,以任意非直角△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,试判断DE与AM之间的数量关系,并说明理由;
(4)如图4,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,请直接写出线段DE与AM之间的数量关系.
(2010·顺义区二模)我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:
(1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;
(2)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;
(3)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说
明理由.
(2010·禅城区模拟)如图,在△ABC中,AB=BC,∠ABC=100°,BD是∠ABC的平分线,E是AB的中点.
(1)证明DE∥BC;(2)求∠EDB的度数.
(附加题)
(1)已知反比例函数
y=
1
x
的图象过点(m,-1),则m=
-1
-1
.
(2)顺次连接任意四边形各边中点所得到的四边形一定是
A
A
A.平行四边形 B.菱形 C.矩形 D.正方形.
如图,在△ABC中,D、E分别是BC、AC的中点,且AD⊥AB,AD=4,AB=6,
求AC的长?
如图,在△ABC中,CE平分∠ACB,AE⊥CE,延长AE交BC于点F,D是AB的中点,BC=20,AC=14,求DE的长.
在梯形ABCD中,如图所示,AD∥BC,点E、F分别是AB、CD的中点,连接EF,EF叫做梯形的中位线.观察EF的位置,联想三角形的中位线定理,请你猜想:EF与AD、BC有怎样的位置和数量关系并证明你的猜想.
如图,已知△ABC的两边AB、AC的中点分别为M、N.
(1)线段MN是△ABC的什么线?
(2)求证:MN∥BC,且MN=
1
2
BC.
第一页
上一页
39
40
41
42
43
下一页
最后一页
112759
112761
112763
112765
112767
112769
112771
112773
112775
112777