数学
已知:如图所示,在△ABC中,∠ABC=45°,CD⊥AB于点D,BE平分∠ABC,且BE⊥AC于点E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.
(1)求证:BF=AC;
(2)求证:DG=DF.
如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)在图1中,你发现线段AC,BD的数量关系是
相等
相等
,直线AC,BD相交成
90
90
度角.
(2)将图1中的△OAB绕点O顺时针旋转90°角,这时(1)中的两个结论是否成立?请做出判断并说明理由.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.
如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.
(1)在图1中,DE交边AB于M,DF交边BC于N
①证明:DM=DN
②在这一旋转过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积
(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
如图①,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF=FP.
(1)在图①中,请你通过观察、测量,猜想并直接写出AB与AP所满足的数量关系和位置关系,并证明;
(2)将三角板△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想.
如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.
(1)若CD=1cm,求AC的长;
(2)求证:AB=AC+CD.
如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点是BC的中点,两边PE,PF分别交AB,AC于点E,F.给出以下五个结论:
(1)AE=CF;(2)∠APE=∠CPF;(3)三角形EPF是等腰直角三角形;(4)S
四边形AEPF
=
1
2
S
△ABC
;(5)EF=AP,
其中正确的有
4
4
个.
如图,等腰直角△ABC的直角边长为3,P为斜边BC上一点,且BP=1,D为AC上一点,若∠APD=45°,则CD的长为
3
2
-1
3
3
2
-1
3
.
如图,△ABC为等腰直角三角形,∠A=90°,BD为∠ABC的角平分线,过D作DE⊥BC于点E.若BC=12cm,则△CDE的周长为
12
12
cm.
已知:如图,四边形ABCD中,∠C=∠A=90°,BC=6,DC=8,若AB=AD,求:S
四边形ABCD
.
已知a,b,c是△ABC的三边长,且满足关系
a-b
+|c
2
-a
2
-b
2
|=0,则△ABC的形状是
等腰直角三角形
等腰直角三角形
.
第一页
上一页
23
24
25
26
27
下一页
最后一页
108521
108522
108523
108524
108525
108527
108529
108531
108534
108536