答案
(1)证明:∵CD⊥AB,BE⊥AC,
∴∠BDC=∠ADC=∠AEB=90°,
∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,
∴∠A=∠DFB,
∵∠ABC=45°,∠BDC=90°,
∴∠DCB=90°-45°=45°=∠DBC,
∴BD=DC,
在△BDF和△CDA中
∵
,
∴△BDF≌△CDA(AAS),
∴BF=AC;
(2)证明:∵BE平分∠ABC,∠ABC=45°,
∴∠ABE=∠CBE=22.5°,
∵∠BDF=∠BHG=90°,
∴∠BGH=∠BFD=67.5°,
∴∠DGF=∠DFG=67.5°,
∴DG=DF.
(1)证明:∵CD⊥AB,BE⊥AC,
∴∠BDC=∠ADC=∠AEB=90°,
∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,
∴∠A=∠DFB,
∵∠ABC=45°,∠BDC=90°,
∴∠DCB=90°-45°=45°=∠DBC,
∴BD=DC,
在△BDF和△CDA中
∵
,
∴△BDF≌△CDA(AAS),
∴BF=AC;
(2)证明:∵BE平分∠ABC,∠ABC=45°,
∴∠ABE=∠CBE=22.5°,
∵∠BDF=∠BHG=90°,
∴∠BGH=∠BFD=67.5°,
∴∠DGF=∠DFG=67.5°,
∴DG=DF.