数学
(2003·常州)如图,直线OC、BC的函数关系式分别为y=x和y=-2x+6,动点P(x,0)在OB上移动(0<x<3),过点P作直线l与x轴垂直.
(1)求点C的坐标;
(2)设△OBC中位于直线l左侧部分的面积为s,写出s与x之间的函数关系式;
(3)在直角坐标系中画出(2)中函数的图象;
(4)当x为何值时,直线l平分△OBC的面积?
(2003·常州)设一次函数y=
1
2
x+2的图象为直线l,l与x轴、y轴分别交于点A、B.
求tan∠BAO的值.
(2002·绍兴)如图,已知平面直角坐标系中三点A(4,0),(0,4),P(x,0)(x
<0),作PC⊥PB交过点A的直线l于点C(4,y).
(1)求y关于x的函数解析式;
(2)当x取最大整数时,求BC与PA的交点Q坐标.
(2002·吉林)如图,菱形OABC的边长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O·A·B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O·A·B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米.
请你回答下列问题:
(1)当x=3时,y的值是多少?
(2)就下列各种情形,求y与x之间的函数关系式:
①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8;
(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x的关系.
(2002·包头)如图,直线y=-
1
2
x+4与x轴、y轴分别交于C、D,以OD为直径作⊙A交CD于F,FA的延长线交⊙A于E,交x轴于B.
(1)设F(a,b),求以a,b为根的一元二次方程;
(2)求BE的长.
(2001·绍兴)在平面直角坐标系xOy中,已知A(-2,0),B(3,0),C(5,6),过点C作x轴的平行线交y轴于点D.
(1)若直线y=kx+b过B、C两点,求k、b的值.
(2)如图,P是线段BC上的点,PA交y轴于点Q,若点P的横坐标为4,求S
PCDQ
;
(3)设点E在线段DC上,AE交y轴于点F,若∠CEB=∠AFB,求cos∠BAE的值.
(1999·海淀区)如图,在矩形ABCD中,AB=4,BC=7,P是BC边上与B点不重合的动点,过点P的直线交CD的延长线于R,交AD于Q(Q与D不重合),且∠RPC=45°,设BP=x,梯形ABPQ的面积为y,求y与x之间的函数关系,并求自变量x的取值范围.
(1998·四川)已知一次函数y=kx+4的图象分别与直线x=2和x=6交于点A、B,且y随x的增大而增大,直线x=2和x=6又分别与x轴交于点D、C.
(1)要使四边形ABCD的面积大于6,且小于64,试求k的取值范围;
(2)设一次函数y=kx+4的图象与x轴相交于点E,△BCE的外心P在第一象限,且到x轴与y轴的距离的和为6,求这个一次函数的解析式,并在直角坐标系内画出草图.
(1997·北京)已知:如图,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x轴、y轴的正半轴上,连接AC,将△ABC沿AC翻折,点B落在该坐标平面内,设这个落点为D,CD交x轴于点E.如果CE=5,OC、OE的长是关于x的方程x
2
+(m-1)x+12=0的两个根
,并且OC>OE.
(1)求点D的坐标;
(2)如果点F是AC的中点,判断点(8,-20)是否在过D、F两点的直线上,并说明现由.
(2013·永春县质检)如图,在矩形OABC中,点A、C的坐标分别是(a,0),(0,
3
),点D是线段BC上的动点(与B、C不重合),过点D作直线l:
y=-
3
x+b
交线段OA于点E.
(1)直接写出矩形OABC的面积(用含a的代数式表示);
(2)已知a=3,当直线l将矩形OABC分成周长相等的两部分时
①求b的值;
②梯形ABDE的内部有一点P,当⊙P与AB、AE、ED都相切时,求⊙P的半径.
(3)已知a=5,若矩形OABC关于直线DE的对称图形为四边形O
1
A
1
B
1
C
1
,设CD=k,当k满足什么条件时,使矩形OABC和四边形O
1
A
1
B
1
C
1
的重叠部分的面积为定值,并求出该定值.
第一页
上一页
97
98
99
100
101
下一页
最后一页
83671
83673
83675
83677
83679
83681
83683
83685
83688
83690