数学
(2008·太原)如图,在平面直角坐标系xOy中,直线y=x+1与y=-
3
4
x+3交于点A,分别交x轴于点B和点
C,点D是直线AC上的一个动点.
(1)求点A,B,C的坐标;
(2)当△CBD为等腰三角形时,求点D的坐标;
(3)在直线AB上是否存在点E,使得以点E,D,O,A为顶点的四边形是平行四边形?如果存在,直接写出
BE
CD
的值;如果不存在,请说明理由.
(2008·龙岩)如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D在
FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.
(1)判断直线DC与⊙O的位置关系,并给出证明;
(2)设点D的坐标为(-2,4),试求MC的长及直线DC的解析式.
(2007·益阳)如图1,M是边长为4的正方形AD边的中点,动点P自A点起,由A·B·C·D匀速运动,直线MP扫过正方形所形成的面积为Y,点P运
动的路程为X,请解答下列问题:
(1)当x=1时,求y的值;
(2)就下列各种情况,求y与x之间的函数关系式:
①0≤x≤4;②4<x≤8 ③8<x≤12;
(3)在给出的直角坐标系(图2)中,画出(2)中函数的图象.
(2007·咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.
(2007·乌鲁木齐)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,6),点B坐标为
(2
3
,2)
,BC∥y轴且与x轴交于点C,直线OB与直线AC相交于点P.
(1)求点P的坐标;
(2)若以点O为圆心,OP的长为半径作⊙O(如图2),求证:直线AC与⊙O相切于点P;
(3)过点B作BD∥x轴与y轴相交于点D,以点O为圆心,r为半径作⊙O,使点D在⊙O内,点C在⊙O外;以点B为圆心,R为半径
作⊙B,若⊙O与⊙B相切,试分别求出r,R的取值范围.
(2007·衢州)如图,点B
1
(1,y
1
),B
2
(2,y
2
),B
3
(3,y
3
)…,B
n
(n,y
n
)(n是正整数)依次为一次函数y=
1
4
x+
1
12
的图象上的点,点A
1
(x
1
,0),A
2
(x
2
,0),A
3
(x
3
,0),…,A
n
(x
n
,0)(n是正整数)依次是x轴正半轴上的点,已知x
1
=a(0<a<1),△A
1
B
1
A
2
,△A
2
B
2
A
3
,△A
3
B
3
A
4
…△A
n
B
n
A
n+1
分别是以B
1
,B
2
,B
3
,…,B
n
为顶点的等腰三角形.
(1)写出B
2
,B
n
两点的坐标;
(2)求x
2
,x
3
(用含a的代数式表示);分析图形中各等腰三角形底边长度之间的关系,写出你认为成立的两个结论;
(3)当a(0<a<1)变化时,在上述所有的等腰三角形中,是否存在直角三角形?若存在,求出相应的a的值;若不存在,请说明理由.
(2007·佳木斯)如图,在平面直角坐标系中,已知点A(-3,6),点B,点C分别在x轴的负半轴和正半轴上,
OB,OC的长分别是方程x
2
-4x+3=0的两根(OB<OC).
(1)求点B,点C的坐标;
(2)若平面内有M(1,-2),D为线段OC上一点,且满足∠DMC=∠BAC,求直线MD的解析式;
(3)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O,P,C,Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.
(2007·济宁)如图,A,B分别为x轴和y轴正半轴上的点,OA,OB的长分别是方程x
2
-14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC方向移
动.
(1)设△APB和△OPB的面积分别为S
1
,S
2
,求S
1
:S
2
的值;
(2)求直线BC的解析式;
(3)设PA-PO=m,P点的移动时间为t.
①当0<t≤4
5
时,试求出m的取值范围;
②当t>4
5
时,你认为m的取值范围如何?(只要求写出结论)
(2007·哈尔滨)如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC交y轴于点E,点C(4,-2),点D(1,2),BC=9,sin∠ABC=
4
5
.
(1)求直线AB的解析式;
(2)若点H的坐标为(-1,-1),动点G从B出发,以1个单位/秒的速度沿着BC边向C点运动(点G可以与点B或点C重合),求△HGE的面积S(S≠0)随动点G的运动时间t′秒变化的函数关系式(写出自变量t′的取值范围);
(3)在(2)的条件下,当
t′=
7
2
秒时,点G停止运动,此时直线GH与y轴交于点N.另一动点P开始从B出发,以1个单位/秒的速度沿着梯形的各边运动一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(点P可以与梯形的各顶点重合).设动点P的运动时间为t秒,点M为直线HE上任意一点(点M不与点H重合),在点P的整个运动过程中,求出所有能使∠PHM与∠HNE相等的t的值.
(2007·桂林)在实施漓江补水工程中,某水库需要将一段护坡土坝进行改造.在施工质量相同的情况下,甲、乙两施工队给出的报价分别是:甲施工队先收启动资金1000元,以后每填土1立方米收费20元,乙施工队不收启动资金,但每填土1立方米收费25元.
(1)设整个工程需要填土为X立方米,选择甲施工队所收的费用为Y
甲
元,选择乙施工队所收的费用为Y
乙
元.请分别写出Y
甲
、Y
乙
、关于X的函数关系式;
(2)如图,土坝的横截面为梯形,现将背水坡坝底加宽2米,即BE=2米,已知原背水坡长AB=4
3
,土坝与地面的倾角∠ABC=60度,要改造100米长的护坡土坝,选择哪家施工队所需费用较少?
(3)如果整个工程所需土方的总量X立方米的取值范围是100≤X≤800,应选择哪家施工队所需费用较少?
第一页
上一页
92
93
94
95
96
下一页
最后一页
83551
83553
83555
83558
83561
83564
83567
83569
83571
83574