试题
题目:
如图,从小明家到学校有两条路.一条沿北偏东45°方向可直达学校前门,另一条从小明家一直往东到商店处,再向正北走100米到学校后门.若两条路的路程相等,学校南北走向,则学校从前门到后门的距离是( )
A.100
2
米
B.100
3
米
C.100
5
米
D.100米
答案
A
解:如图,由题意得∠DAB=45°,BC=100,AB+100=AD,
∵cos∠DAB=
2
2
=
AB
AD
,
∴AB=
2
2
AD=
2
2
(AB+100),
解得:AB=100
2
+100,
∴BD=AB=100
2
+100,
∴CD=100
2
(米).
故选A.
考点梳理
考点
分析
点评
解直角三角形的应用.
易得∠DAB为45°,那么利用45°的余弦值可得AB的长,也就是BD的长,减去100即为所求的距离.
本题考查解直角三角形的应用;综合利用题中所给条件得到AB的长是解决本题的突破点.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
某学校计划为新生配备如图1所示的折叠凳.图2是折叠凳撑开后的侧面示意图,其中凳腿AB和CD的长相等,O是它们的中点.为使折叠凳既舒适又牢固,厂家将撑开后的折叠凳高度设计为40cm,∠DOB=100°,那么凳腿的长AB和篷布面的宽AD各应设计为多少厘米?(结果精确到0.1cm)(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°
≈1.19,sin80°≈0.98,cos80°≈0.17,tan80°≈5.67)
为了测量被池塘隔开的A,B两点之间的距离.根据实际情况,作出如下图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上,实际可测量①BC;②CD;③DE;④EF;⑤DB;⑥∠ACB;⑦∠ADB等数据.你会选择测量哪些数据?请说出你的方案,并列出求AB长的表达式.
已知,如图,△ABC中,AB=AC,∠A=120°,BC=6.求AB的长.
如图1,为了测量小河的宽度,在河岸边任意取点A,再在河的另一边取点B、C,测得∠ABC=30°,∠ACD=60°,量得BC的长为12m.
(1)求小河的宽度;
(2)请再设计一种测量河宽的方案(测量工具不限),在图2中画出设计草图,并作简要说明.