试题
题目:
某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价为a元,则购买这种草皮至少需要( )
A.450a元
B.300a元
C.225a元
D.150a元
答案
D
解:如图,作BA边的高CD,设与BA的延长线交于点D,
∵∠BAC=150°,
∴∠DAC=30°,
∵CD⊥BD,AC=30m,
∴CD=15m,
∵AB=20m,
∴S
△ABC
=
1
2
AB×CD=
1
2
×20×15=150m
2
,
∵每平方米售价a元,
∴购买这种草皮的价格为150a元.
故选D.
考点梳理
考点
分析
点评
解直角三角形的应用.
作BA边的高CD,设与BA的延长线交于点D,则∠DAC=30°,由AC=30m,即可求出CD=15m,然后根据三角形的面积公式即可推出△ABC的面积为150m
2
,最后根据每平方米的售价即可推出结果.
本题主要考查三角形的面积公式,含30度角的直角三角形的性质,关键在于做出AB边上的高,根据相关的性质推出高CD的长度,正确的计算出△ABC的面积.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
某学校计划为新生配备如图1所示的折叠凳.图2是折叠凳撑开后的侧面示意图,其中凳腿AB和CD的长相等,O是它们的中点.为使折叠凳既舒适又牢固,厂家将撑开后的折叠凳高度设计为40cm,∠DOB=100°,那么凳腿的长AB和篷布面的宽AD各应设计为多少厘米?(结果精确到0.1cm)(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°
≈1.19,sin80°≈0.98,cos80°≈0.17,tan80°≈5.67)
为了测量被池塘隔开的A,B两点之间的距离.根据实际情况,作出如下图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上,实际可测量①BC;②CD;③DE;④EF;⑤DB;⑥∠ACB;⑦∠ADB等数据.你会选择测量哪些数据?请说出你的方案,并列出求AB长的表达式.
已知,如图,△ABC中,AB=AC,∠A=120°,BC=6.求AB的长.
如图1,为了测量小河的宽度,在河岸边任意取点A,再在河的另一边取点B、C,测得∠ABC=30°,∠ACD=60°,量得BC的长为12m.
(1)求小河的宽度;
(2)请再设计一种测量河宽的方案(测量工具不限),在图2中画出设计草图,并作简要说明.