试题
题目:
如图,河对岸有古塔AB.小敏在C处测得塔顶A的仰角为30°,向塔前进20米到达D.在D处测得A的仰角为45°,则塔高是多少米?
答案
解:在Rt△ABD中,
∵∠ADB=45°,
∴BD=AB.
在Rt△ABC中,
∵∠ACB=30°,
∴BC=
3
AB.
设AB=x(米),
∵CD=20,
∴BC=x+20.
∴x+20=
3
x
∴x=
20
3
-1
=10(
3
+1).
即铁塔AB的高为10(
3
+1)米.
解:在Rt△ABD中,
∵∠ADB=45°,
∴BD=AB.
在Rt△ABC中,
∵∠ACB=30°,
∴BC=
3
AB.
设AB=x(米),
∵CD=20,
∴BC=x+20.
∴x+20=
3
x
∴x=
20
3
-1
=10(
3
+1).
即铁塔AB的高为10(
3
+1)米.
考点梳理
考点
分析
点评
解直角三角形的应用-仰角俯角问题.
首先根据题意分析图形;本题涉及到两个直角三角形,设AB=x(米),再利用CD=BC-BD=20的关系,进而可解即可求出答案.
本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2009·上海一模)如图,某直升飞机于空中A处观测到其正前方地面控制点C的俯角为30°;若飞机航向不变,继续向前飞行1000米至B处时,观测到其正前方地面控制点C的俯角为45°,问飞机再向前飞行多少米与地面控制点C的距离最近?(结果保留根号)
(2009·新昌县模拟)如图,小明用一块有一个锐角为 30°的直角三角板测量树高,已知小明离树的距离为4米,DE为1.
68米.
(1)这棵树大约有多高?(精确到0.01米)
(2)小明沿BE方向走1米,求此时小明看树顶C的仰角.(精确到1度)(参考数据tan37.6°≈0.77.)
(2009·肇庆二模)湖泊中央有一竖直的建筑物AB,某人在地面C处测得顶部A的仰角为60°,往BC方向前进100米到D处,测得顶部A的仰角为30°(如图),求建筑物AB的高度.
(2010·朝阳区一模)如图,小高同学观景塔AD顶端A点处,在地面上一条河的两岸各选择一点B、C使得点B、C、D在一条直线上,用测角仪器测得B、C两点的俯角分别是30°和60°.已知观景塔的高度是24米,求河宽BC的值(精确到0.1米).
(参考数据:
2
=1.41 ,
3
=1.73
)