试题
题目:
如图,甲、乙两栋高楼,从甲楼顶部C点测得乙楼顶部A点的仰角α为30°,测得乙楼底部B点的俯角β为60°,乙楼AB高为120
3
米.求甲、乙两栋高楼的水平距离BD为多少米?
答案
解:作CE⊥AB于点E.
∵CE∥DB,CD∥AB,且∠CDB=90°,
∴四边形BECD是矩形.
∴CD=BE,CE=BD.
设CE=x
在Rt△ACE中,α=30°.
∵
tanα=
AE
CE
,
AE=
3
3
x
BE=120
3
-
3
3
x
在Rt△BCE中,β=60°.
∵
tanβ=
BE
CE
,
3
x=120
3
-
3
3
x
解得,x=90
答:甲、乙两栋高楼的水平距离BD为90米.
解:作CE⊥AB于点E.
∵CE∥DB,CD∥AB,且∠CDB=90°,
∴四边形BECD是矩形.
∴CD=BE,CE=BD.
设CE=x
在Rt△ACE中,α=30°.
∵
tanα=
AE
CE
,
AE=
3
3
x
BE=120
3
-
3
3
x
在Rt△BCE中,β=60°.
∵
tanβ=
BE
CE
,
3
x=120
3
-
3
3
x
解得,x=90
答:甲、乙两栋高楼的水平距离BD为90米.
考点梳理
考点
分析
点评
解直角三角形的应用-仰角俯角问题.
作CE⊥AB于点E,图中将有两个直角三角形,利用30°、60°角的正切值,分别计算出AE和BE,即可解答.
本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
找相似题
(2013·太原)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
(2009·上海一模)如图,某直升飞机于空中A处观测到其正前方地面控制点C的俯角为30°;若飞机航向不变,继续向前飞行1000米至B处时,观测到其正前方地面控制点C的俯角为45°,问飞机再向前飞行多少米与地面控制点C的距离最近?(结果保留根号)
(2009·新昌县模拟)如图,小明用一块有一个锐角为 30°的直角三角板测量树高,已知小明离树的距离为4米,DE为1.
68米.
(1)这棵树大约有多高?(精确到0.01米)
(2)小明沿BE方向走1米,求此时小明看树顶C的仰角.(精确到1度)(参考数据tan37.6°≈0.77.)
(2009·肇庆二模)湖泊中央有一竖直的建筑物AB,某人在地面C处测得顶部A的仰角为60°,往BC方向前进100米到D处,测得顶部A的仰角为30°(如图),求建筑物AB的高度.
(2010·朝阳区一模)如图,小高同学观景塔AD顶端A点处,在地面上一条河的两岸各选择一点B、C使得点B、C、D在一条直线上,用测角仪器测得B、C两点的俯角分别是30°和60°.已知观景塔的高度是24米,求河宽BC的值(精确到0.1米).
(参考数据:
2
=1.41 ,
3
=1.73
)