试题
题目:
如右图,△ABC的外接圆O半径为3,AB=2
6
,AD为BC边上的高,则cos∠DAC=
6
3
6
3
.
答案
6
3
解:作直径AE,连接BE,
∴∠ABE=90°,∠E=∠C,
∵AD为BC边上的高,
∴∠ADC=90°,
∴∠ADC=∠ABE,
∴∠BAE=∠DAC,
∵△ABC的外接圆O半径为3,
∴AE=6,
在Rt△ABE中,cos∠BAE=
AB
AE
=
2
6
6
=
6
3
.
∴cos∠DAC=
6
3
.
故答案为:
6
3
.
考点梳理
考点
分析
点评
圆周角定理;锐角三角函数的定义.
首先作直径AE,连接BE,根据圆周角定理,即可得∠ABE=90°,∠E=∠C,继而可证得∠BAE=∠DAC,然后在Rt△ABE中,利用三角函数的性质,即可求得答案.
此题考查了圆周角定理与三角函数的性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.
找相似题
(2013·宿迁)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )
(2013·深圳)如图,已知l
1
∥l
2
∥l
3
,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )
(2013·鄂州)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=( )