试题
题目:
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )
A.
2
3
B.
3
4
C.
4
3
D.
3
2
答案
C
解:如图,过点C作CE⊥l
4
于点E,延长EC交l
1
于点F.
在矩形ABCD中,∠BCD=90°,
∵∠α+∠BCE=90°,∠BCE+∠DCF=180°-90°=90°,
∴∠α=∠DCF,
又∵∠BEC=∠CFD=90°,
∴△BEC∽△CFD,
∴
BE
CF
=
BC
CD
,即
BE
h
=
6
4
,
∴BE=
3
2
h.
在Rt△BCE中,∵∠BEC=90°,
∴tanα=
CE
BE
=
2h
3
2
h
=
4
3
.
故选C.
考点梳理
考点
分析
点评
相似三角形的判定与性质;平行线之间的距离;矩形的性质;锐角三角函数的定义.
过点C作CE⊥l
4
于点E,延长EC交l
1
于点F,根据同角的余角相等求出∠α=∠DCF,利用两角对应相等的两三角形相似证明△BEC∽△CFD,再由相似三角形对应边成比例可得BE=
3
2
h,然后在Rt△BCE中利用锐角的正切值等于对边比邻边列式计算即可得解.
本题考查了相似三角形的判定与性质,矩形的性质,锐角三角形函数的定义,作辅助线,构造出相似三角形以及∠α所在的直角三角形是解题的关键.
找相似题
(2013·宿迁)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )
(2013·深圳)如图,已知l
1
∥l
2
∥l
3
,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·鄂州)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=( )
(2012·枣庄)如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则cos∠OBC的值为( )