试题
题目:
如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,tan∠BAD的值是
1
1
.
答案
1
解:连接BC,如图,
易证△ABE≌△CBF,∴∠ABE=∠CBF,AB=CB,
∵∠ABE+∠ABF=90°∴∠ABF+∠CBF=90°,
∴tan∠BAD=
BC
AB
=1.
故答案为1.
考点梳理
考点
分析
点评
专题
锐角三角函数的定义;勾股定理;勾股定理的逆定理.
连接BC,可证明△ABC为直角三角形,再根据三角函数的定义求解即可.
本题考查了锐角三角函数的定义、全等三角形的判定和性质、勾股定理,是基础知识要熟练掌握.
证明题.
找相似题
(2013·宿迁)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )
(2013·深圳)如图,已知l
1
∥l
2
∥l
3
,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )
(2013·鄂州)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=( )