试题

题目:
青果学院如图,在Rt△ABC中,∠BCA=90°,CD是中线,BC=6,CD=5,则tan∠ACD=(  )



答案
A
解:∵∠BCA=90°,CD是中线,
∴AB=2CD=2×5=10,
AD=CD,
∴∠ACD=∠A,
由勾股定理得,AC=
AB2-BC2
=
102-62
=8,
∴tan∠ACD=tan∠A=
BC
AC
=
6
8
=
3
4

故选A.
考点梳理
直角三角形斜边上的中线;勾股定理;锐角三角函数的定义.
根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD,AD=CD,根据等边对等角可得∠ACD=∠A,再利用勾股定理列式求出AC,然后根据锐角的正切值等于对边比邻边解答.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理和锐角三角函数,熟记定理和性质并准确识图是解题的关键.
找相似题