试题
题目:
(2010·滨州)如图,已知AB是⊙O的直径,点C在⊙O上,且AB=13,BC=5.
(1)求sin∠BAC的值;
(2)如果OD⊥AC,垂足为D,求AD的长;
(3)求图中阴影部分的面积.(精确到0.1)
答案
解:(1)∵AB是⊙O的直径,点C在⊙O上,
∴∠ACB=90°.
∵AB=13,BC=5,
∴sin∠BAC=
BC
AB
=
5
13
;
(2)在Rt△ABC中,
AC=
AB
2
-
BC
2
=
13
2
-
5
2
=12,
∴AD=
1
2
AC=6;
(3)S
阴影部分
=
1
2
π×
(
13
2
)
2
-
1
2
×5×12
≈36.3(平方单位).
解:(1)∵AB是⊙O的直径,点C在⊙O上,
∴∠ACB=90°.
∵AB=13,BC=5,
∴sin∠BAC=
BC
AB
=
5
13
;
(2)在Rt△ABC中,
AC=
AB
2
-
BC
2
=
13
2
-
5
2
=12,
∴AD=
1
2
AC=6;
(3)S
阴影部分
=
1
2
π×
(
13
2
)
2
-
1
2
×5×12
≈36.3(平方单位).
考点梳理
考点
分析
点评
专题
扇形面积的计算;勾股定理;圆周角定理;锐角三角函数的定义.
(1)已知AB是⊙O的直径,则∠ACB=90°,在直角△ABC中根据勾股定理,求出BC,即可得到sin∠BAC的值.
(2)OD⊥AC,则满足垂径定理,因而在直角△ABC中,根据勾股定理就可以求出AD的长.
(3)阴影部分的面积就是半圆的面积减去直角△ABC的面积.
阴影部分的面积可以看作是半圆的面积减去直角三角形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.
计算题;压轴题.
找相似题
(2013·宿迁)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )
(2013·深圳)如图,已知l
1
∥l
2
∥l
3
,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )
(2013·鄂州)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=( )