二次函数综合题;解二元一次方程;反比例函数图象上点的坐标特征;二次函数的最值;待定系数法求二次函数解析式;平行线的性质;三角形的面积;勾股定理;锐角三角函数的定义.
①把A(1,4)代入即可;
②过B作BM⊥x轴于M,BN⊥y轴于N,过A作AH⊥x轴于H,两线BN和AH交于Q,设OM=c,ON=d,c>0,d>o,根据S=S
△ABQ-S
△AOH-S
△BNO-S
矩形ONQH,和cd=4,求出c=2,d=2,得到B(-2,-2),把A(1,4)和B(-2,-2)代入抛物线得出方程组
,求出方程组得解即可;
③充分利用(-2,-2)这一坐标,由△DFE相似于△DBO求得EF的长(含m),再表示出F到x轴的距离,利用△EDB的面积减去△EDF的面积即可建立S与m的函数关系
④S=
m(1+
-m),当m=
时,S最大,把m=
代入即可求出s,从而得到E的坐标.
本题主要考查对用待定系数法求二次函数的解析式,反比例函数的图象上点的坐标特征,解二元一次方程,三角形的面积,平行线的性质,勾股定理,函数的最值,锐角三角函数的定义等知识点的理解和掌握,能熟练地运用这些性质进行计算是解此题的关键,此题是一个拔高的题目,有一定的难度.
计算题.