试题
题目:
(2012·武汉模拟)如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于( )
A.
1
2
B.
1
3
C.
1
4
D.
2
3
答案
C
解:当点P运动到恰好点Q落在⊙O上,连接QB,OP,BC,再连接QO并延长交⊙O于点C,则∠CBQ=90°(直径所对的圆周角是直角)
∵B、Q分别是OA、AP的中点,
∴BQ∥OP,
∵OP=OB=BA=
1
2
OA=2,
∴QB=1
在Rt△CQB中,∠CBQ=90°
∴cos∠OQB=
QB
QC
=
1
4
.
故选C.
考点梳理
考点
分析
点评
专题
锐角三角函数的定义;三角形中位线定理.
先构造直角三角形QBC,根据三角形中位线定理分别求出QB、QC的长,再根据余弦的定义即可求出结果.
本题综合考查了三角形中位线定理,余弦的定义和圆的性质,解题的关键是通过作辅助线构造直角三角形.
综合题.
找相似题
(2013·宿迁)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )
(2013·深圳)如图,已知l
1
∥l
2
∥l
3
,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )
(2013·鄂州)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=( )