试题
题目:
(2011·芜湖)如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为( )
A.
1
2
B.
3
4
C.
3
2
D.
5
4
答案
C
解:连接CA并延长到圆上一点D,
∵CD为直径,∴∠COD=∠yOx=90°,
∵直径为10的⊙A经过点C(0,5)和点O(0,0),
∴CD=10,CO=5,
∴DO=5
3
,
∵∠B=∠CDO,
∴∠OBC的余弦值为∠CDO的余弦值,
∴cos∠OBC=cos∠CDO=
5
3
10
=
3
2
.
故选C.
考点梳理
考点
分析
点评
圆周角定理;勾股定理;锐角三角函数的定义.
根据圆周角定理得出∠B=∠CDO,得出∠OBC的余弦值为∠CDO的余弦值,再根据CD=10,CO=5,得出DO=5
3
,进而得出答案.
此题主要考查了圆周角定理以及勾股定理和锐角三角函数的定义,正确得出∠OBC的余弦值为∠CDO的余弦值是解决问题的关键.
找相似题
(2013·宿迁)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )
(2013·深圳)如图,已知l
1
∥l
2
∥l
3
,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )
(2013·鄂州)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=( )