试题
题目:
(2006·株洲)一个装有进出水管的水池,单位时间内进、出水量都是一定的.已知水池的容积800升,又知单开进水管20分钟可把空水池注满;若同时打开进、出水管,20分钟可把满水池的水放完,现已知水池内有水200升,先打开进水管3分钟,再打开出水管,两管同时开放,直至把水池中的水放完,则能确定反映这一过程中水池的水量q(升)随时间t(分钟)变化的函数图象是( )
A.
B.
C.
D.
答案
B
解:因为进水速度是800÷20=40升/分,同时打开进、出水管,20分钟可把满水池的水放完,则出水速度是40升/分,
所以先打开进水管3分钟,水池中有320升的水,两管同时开放,直至把水池中的水放完共用了320÷40=8分钟,故3+8=11,
故选B.
考点梳理
考点
分析
点评
专题
动点问题的函数图象.
根据实际意义进行图象的判断,注意特殊点的寻找.
本题主要考查了根据实际意义读图的能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
压轴题.
找相似题
(2013·南充)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm
2
,已知y与t的函数关
系的图象如图2(曲线OM为抛物线的一部分),则下列结论:
①AD=BE=5cm;
②当0<t≤5时,y=
2
5
t
2
;
③直线NH的解析式为y=-
2
5
t+27;
④若△ABE与△QBP相似,则t=
29
4
秒,
其中正确结论的个数为( )
(2013·莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN
2
=y,则y关于x的函数图象大致为( )
(2013·贵阳)如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是( )
(2012·庆阳)如图,点A、B、C、D、E、F为圆O的六等分点,动点P从圆心O出发,沿O-C-D-O的路线作匀速运动.设运动时间为x秒,∠APF的度数为y度,则下列图象中表示y与x之间函数关系最恰当的是( )
(2012·佳木斯)如图所示,四边形ABCD是边长为4cm的正方形,动点P在正方形ABCD的边上沿着A→B→C→D的路径以1cm/s的速度运动,在这个运动过程中△APD的面积s(cm
2
)随时间t(s)的变化关系用图象表示,正确的是 ( )