试题
题目:
△ABC的两边分别为5,12,另一边c为奇数,且a+b+c是3的倍数,则c应为
13
13
,此三角形为
直角
直角
三角形.
答案
13
直角
解:∵12-5=7<c<5+12=17,c又为奇数,
∴满足从7到17的奇数有9,11,13,15,
∵与a+b的和又是3的倍数,
∴a+b+c=30,
∴c=13
∵5
2
+12
2
=13
2
,
∴△ABC是直角三角形.
考点梳理
考点
分析
点评
勾股定理的逆定理.
根据三角形的三边关系知,求得第三边c应满足12-5=7<c<5+12=17,又因为这个数与a+b的和又是3的倍数,则可求得此数,再根据直角三角形的判定方法判定三角形.
本题考查了由三角形的三边关系确定第三边的能力,还考查直角三角形的判定.隐含了整体的数学思想和正确运算的能力.
找相似题
(2010·长沙)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )
(2009·厦门)下列长度的各组线段能组成一个直角三角形的是( )
(2008·汕头)已知△ABC的三边长分别为5,13,12,则△ABC的面积为( )
(2006·张家界)有4条线段,分别为:3cm,4cm,5cm,6cm,从中任取3条,能构成直角三角形的概率是( )
(2005·毕节地区)以下列各组数为边长,能构成直角三角形的是( )