试题
题目:
(2009·自贡)如图,在梯形ABCD中,CD∥AB,AB=2,BC=3,CD=1,E是AD的中点,求证:CE⊥BE.
答案
证明:延长CE交BA的延长线于点G.
∵E是AD中点,
∴AE=ED,
∵AB∥CD,
∴∠CDE=∠GAE,∠DCE=∠AGE,
∴△CED≌△GEA,
∴CE=GE,AG=DC,
∴GB=BC=3,
∴EB⊥EC.
证明:延长CE交BA的延长线于点G.
∵E是AD中点,
∴AE=ED,
∵AB∥CD,
∴∠CDE=∠GAE,∠DCE=∠AGE,
∴△CED≌△GEA,
∴CE=GE,AG=DC,
∴GB=BC=3,
∴EB⊥EC.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;勾股定理的逆定理.
延长CE交BA的延长线于点G,那么可得△CED≌△GEA,那么CE=GE,AE=DE,进而可得BC=BG,那么CE⊥BE.
本题考查梯形的常用辅助线方法的应用;碰到中点问题时构造全等三角形是常用的辅助线方法.
证明题.
找相似题
(2010·长沙)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )
(2009·厦门)下列长度的各组线段能组成一个直角三角形的是( )
(2008·汕头)已知△ABC的三边长分别为5,13,12,则△ABC的面积为( )
(2006·张家界)有4条线段,分别为:3cm,4cm,5cm,6cm,从中任取3条,能构成直角三角形的概率是( )
(2005·毕节地区)以下列各组数为边长,能构成直角三角形的是( )