试题
题目:
如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识
(1)求△ABC的面积.
(2)判断△ABC是什么形状?并说明理由.
答案
解:(1)△ABC的面积=4×8-1×8÷2-2×3÷2-6×4÷2=13.
故△ABC的面积为13;
(2)∵正方形小方格边长为1
∴AC=
1
2
+
8
2
=
65
,AB=
3
2
+
2
2
=
13
,BC=
6
2
+
4
2
=2
13
,
∵在△ABC中,AB
2
+BC
2
=13+52=65,AC
2
=65,
∴AB
2
+BC
2
=AC
2
,
∴网格中的△ABC是直角三角形.
解:(1)△ABC的面积=4×8-1×8÷2-2×3÷2-6×4÷2=13.
故△ABC的面积为13;
(2)∵正方形小方格边长为1
∴AC=
1
2
+
8
2
=
65
,AB=
3
2
+
2
2
=
13
,BC=
6
2
+
4
2
=2
13
,
∵在△ABC中,AB
2
+BC
2
=13+52=65,AC
2
=65,
∴AB
2
+BC
2
=AC
2
,
∴网格中的△ABC是直角三角形.
考点梳理
考点
分析
点评
专题
勾股定理;三角形的面积;勾股定理的逆定理.
(1)用长方形的面积减去三个小三角形的面积即可求出△ABC的面积.
(2)根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.
考查了三角形的面积,勾股定理和勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a
2
+b
2
=c
2
,则三角形ABC是直角三角形.
网格型.
找相似题
(2010·长沙)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )
(2009·厦门)下列长度的各组线段能组成一个直角三角形的是( )
(2008·汕头)已知△ABC的三边长分别为5,13,12,则△ABC的面积为( )
(2006·张家界)有4条线段,分别为:3cm,4cm,5cm,6cm,从中任取3条,能构成直角三角形的概率是( )
(2005·毕节地区)以下列各组数为边长,能构成直角三角形的是( )