答案

解:过A点作AE⊥DB,交DB的延长线于点E,
则∠ABE=180°-∠ABC-∠DBC=180°-90°-45°=45°,
∴可设AE=BE=x,
∴AB=
=
x.
∴BC=AB·tan60°=
x.
BD=BC·sin45°=
x.
根据勾股定理得:AD=
=
x∴sin∠ADB=
=
=
=
.

解:过A点作AE⊥DB,交DB的延长线于点E,
则∠ABE=180°-∠ABC-∠DBC=180°-90°-45°=45°,
∴可设AE=BE=x,
∴AB=
=
x.
∴BC=AB·tan60°=
x.
BD=BC·sin45°=
x.
根据勾股定理得:AD=
=
x∴sin∠ADB=
=
=
=
.