试题

题目:
青果学院(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=(  )



答案
B
解:∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,
∴AO=4cm,BO=3cm,
在Rt△AOB中,AB=
AO2+BO2
=5cm,
1
2
BD×AC=AB×DH,
∴DH=
24
5
cm,
在Rt△DHB中,BH=
DB2-DH2
=
18
5
cm,
则AH=AB-BH=
7
5
cm,
∵tan∠HAG=
GH
AH
=
OB
AO
=
3
4

∴GH=
3
4
AH=
21
20
cm.
故选B.
考点梳理
菱形的性质;勾股定理;解直角三角形.
先求出菱形的边长,然后利用面积的两种表示方法求出DH,在Rt△DHB中求出BH,然后得出AH,利用tan∠HAG的值,可得出GH的值.
本题考查了菱形的性质、解直角三角形及三角函数值的知识,注意菱形的面积等于对角线乘积的一半,也等于底乘高.
找相似题