试题
题目:
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
A.
2
r
B.
3
r
C.r
D.2r
答案
B
解:连接AB,与OC交于点D,如图所示:
∵四边形ACBO为菱形,
∴OA=OB=AC=BC,OC⊥AB,又OA=OC=OB,
∴△AOC和△BOC都为等边三角形,AD=BD,
在Rt△AOD中,OA=r,∠AOD=60°,
∴AD=OAsin60°=
3
2
r,
则AB=2AD=
3
r.
故选B
考点梳理
考点
分析
点评
专题
垂径定理;等边三角形的判定与性质;菱形的性质;解直角三角形.
连接AB,与OC交于点D,由ACBO为菱形,根据菱形的性质得到对角线互相垂直,且四条边相等,再由半径相等得到三角形AOC与三角形BOC都为等边三角形,同时得到AD=BD,在直角三角形AOD中,由OA=r,∠AOD为60°,利用余弦函数定义及特殊角的三角函数值求出AD的长,即可求出AB的长.
此题考查了菱形的性质,等边三角形的判定与性质,垂径定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.
计算题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )
(2011·黔南州)在平面直角坐标系中,设点P到原点O的距离为p,OP与x轴正方向的夹角为a,则用[p,α]表示点P的极坐标,显然,点P的极坐标与它的坐标存在一一对应关系.例如:点P的坐标为(1,1),则其极坐标为[
2
,45°].若点Q的极坐标为[4,60°],则点Q的坐标为( )