试题
题目:
(2004·上海)如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B与点D重合,折痕分别交边AB、BC于点F、E,若AD
=2,BC=8.
(1)求BE的长;
(2)求∠CDE的正切值.
答案
解:(1)∵△DFE是△BFE翻折而成,
∴△BFE≌△DFE,
∵在△BDE中,DE=BE,∠DBE=45°,
∴∠BDE=∠DBE=45°
∴∠DEB=90度.即DE⊥BC.(1分)
在等腰梯形ABCD中,AD=2,BC=8,
∴EC=
1
2
(BC-AD)=3.
∴BE=BC-EC=5;(3分)
(2)由(1)得,DE=BE=5.
在△DEC中,∠DEC=90°,DE=5,EC=3,
所以tan∠CDE=
EC
ED
=
3
5
.(5分)
解:(1)∵△DFE是△BFE翻折而成,
∴△BFE≌△DFE,
∵在△BDE中,DE=BE,∠DBE=45°,
∴∠BDE=∠DBE=45°
∴∠DEB=90度.即DE⊥BC.(1分)
在等腰梯形ABCD中,AD=2,BC=8,
∴EC=
1
2
(BC-AD)=3.
∴BE=BC-EC=5;(3分)
(2)由(1)得,DE=BE=5.
在△DEC中,∠DEC=90°,DE=5,EC=3,
所以tan∠CDE=
EC
ED
=
3
5
.(5分)
考点梳理
考点
分析
点评
专题
等腰梯形的性质;全等三角形的判定与性质;解直角三角形.
(1)由题意得△BFE≌△DFE从而得到DE=BE,由已知可求得EC的值,从而可得到BE的长;
(2)已知DE=BE,则根据正切公式即可求得其值.
此题主要考查学生对等腰梯形的性质的理解及运用.
几何综合题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )