答案

解:(1)CD是⊙O的切线
证明:连接OD
∵∠ADE=60°,∠C=30°
∴∠A=30°
∵OA=OD
∴∠ODA=∠A=30°
∴∠ODE=∠ODA+∠ADE=30°+60°=90°
∴OD⊥CD
∴CD是⊙O的切线;
(2)在Rt△ODC中,∠ODC=90°,∠C=30°,CD=3
∵tanC=
∴OD=CD·tanC=3
×
=3
∴OC=2OD=6
∵OB=OD=3
∴BC=OC-OB=6-3=3.

解:(1)CD是⊙O的切线
证明:连接OD
∵∠ADE=60°,∠C=30°
∴∠A=30°
∵OA=OD
∴∠ODA=∠A=30°
∴∠ODE=∠ODA+∠ADE=30°+60°=90°
∴OD⊥CD
∴CD是⊙O的切线;
(2)在Rt△ODC中,∠ODC=90°,∠C=30°,CD=3
∵tanC=
∴OD=CD·tanC=3
×
=3
∴OC=2OD=6
∵OB=OD=3
∴BC=OC-OB=6-3=3.