题目:

(2014·宝山区一模)通过锐角三角比的学习,我们已经知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长比与角的大小之间可以相互转化.类似的我们可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图在△ABC中,AB=AC,
顶角A的正对记作sadA,这时sadA=
=.我们容易知道一个角的大小与这个角的正对值也是互相唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°=
1
1
;sad90°=
.
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是
0<sadA<2
0<sadA<2
.
(3)试求sad36°的值.
答案
1
0<sadA<2
解:(1)根据正对定义,
当顶角为60°时,等腰三角形底角为60°,
则三角形为等边三角形,
则sad60°=
=1.
根据正对定义,
当顶角为90°时,等腰三角形底角为45°,
则三角形为等腰直角三角形,
则sad90°=
=
故答案为:1,
.
(2)当∠A接近0°时,sadA接近0,
当∠A接近180°时,等腰三角形的底接近于腰的二倍,故sadA接近2.
于是sadA的取值范围是0<sadA<2.
故答案为:0<sadA<2.
(3)如图所示:已知:∠A=36°,AB=AC,BC=BD,

∴∠A=∠CBD=36°,∠ABC=∠C=72°,
∴△BCD∽△ABC,
∴
=
,
∴
=
,
解得:BC=
CD,
∴sad36°=
=
.