试题
题目:
(1998·金华)已知⊙O的直径AB=
2
2
,过点A有两条弦AC=2cm,AD=
6
cm,求劣弧CD的度数.
答案
解:如图1,连接BC,BD
∵AB是直径
∴∠ACB=∠ADB=90°
∴cos∠CAB=
AC
AB
=
2
2
,即∠CAB=45°
cos∠DAB=
AD
AB
=
3
2
,即∠DAB=30°
∴∠CAD=15°,
所以劣弧CD的度数=2×15°=30°.
如图2,连接BC,BD.
∵AB是直径
∴∠ACB=∠ADB=90°
∴cos∠CAB=
AC
AB
=
2
2
,即∠CAB=45°
cos∠DAB=
AD
AB
=
3
2
,即∠DAB=30°,
∴∠CAD=∠CAB+∠DAB=75°,
∴劣弧CD的度数是:75°×2=150°.
综上所述,劣弧CD的度数是30°或150°.
解:如图1,连接BC,BD
∵AB是直径
∴∠ACB=∠ADB=90°
∴cos∠CAB=
AC
AB
=
2
2
,即∠CAB=45°
cos∠DAB=
AD
AB
=
3
2
,即∠DAB=30°
∴∠CAD=15°,
所以劣弧CD的度数=2×15°=30°.
如图2,连接BC,BD.
∵AB是直径
∴∠ACB=∠ADB=90°
∴cos∠CAB=
AC
AB
=
2
2
,即∠CAB=45°
cos∠DAB=
AD
AB
=
3
2
,即∠DAB=30°,
∴∠CAD=∠CAB+∠DAB=75°,
∴劣弧CD的度数是:75°×2=150°.
综上所述,劣弧CD的度数是30°或150°.
考点梳理
考点
分析
点评
圆周角定理;解直角三角形.
作图并连接BC,BD,分别求得∠CAB,∠DAB的度数,则∠CAD的度数可求得,劣弧CD的度数即可求出.
此题考查了学生对圆周角的定理及解直角三角形的综合运用.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )