试题
题目:
(2001·上海)如图,在△ABC中∠C=90°,点D在BC上,BD=4,AD=BC,
cos∠ADC=
3
5
,
求:(1)DC的长;(2)sinB的值.
答案
解:(1)在直角△ACD中,
cos∠ADC=
3
5
=
CD
AD
,
因而可以设CD=3x,AD=5x,
根据勾股定理得到AC=4x,则BC=AD=5x,
∵BD=4,∴5x-3x=4,
解得x=2,
因而BC=10,AC=8,
CD=6;
(2)在直角△ABC中,根据勾股定理得到AB=2
41
,
∴sinB=
AC
AB
=
8
2
41
=
4
41
41
.
解:(1)在直角△ACD中,
cos∠ADC=
3
5
=
CD
AD
,
因而可以设CD=3x,AD=5x,
根据勾股定理得到AC=4x,则BC=AD=5x,
∵BD=4,∴5x-3x=4,
解得x=2,
因而BC=10,AC=8,
CD=6;
(2)在直角△ABC中,根据勾股定理得到AB=2
41
,
∴sinB=
AC
AB
=
8
2
41
=
4
41
41
.
考点梳理
考点
分析
点评
解直角三角形.
根据
cos∠ADC=
3
5
,就是已知CD:AD=3:5,因而可以设CD=3x,AD=5x,AC=4x.根据BD=4,就可以得到关于x的方程,就可以求出x,求出各线段的长度,求出sinB的值.
本题主要考查了三角函数的定义,正确求出图形中的线段的长是解决本题的关键.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )