圆周角定理;相似三角形的判定与性质;解直角三角形.
(1)在△ABE与△DBC中,有∠ABE=∠DBC,∠BAE=∠BDC=90°,根据相似三角形的判定,它们相似;
(2)由△ABE∽△DBC,可知∠AEB=∠DCB,在Rt△DCB中,先由勾股定理求出BD的值,再根据正弦的定义求出sin∠DCB,得出sin∠AEB的值;
(3)求弦AB的长,sin∠AEB的值已求,求出BE的值即可,可以通过求BD、ED得出.
本题考查了相似三角形的判断,同弧所对的圆周角相等、直径所对的圆周角为直角及解三角函数的知识,本题是一道较难的题目.
几何综合题;压轴题.