答案

(1)证明:∵AB=AC,
∴∠B=∠C,
∵∠APM=∠B,
∴∠APM=∠B=∠C,
∵∠CMP=∠PAM+∠APM,∠BPA=∠PAM+∠C,
∴∠BPA=∠CMP,
∴△ABP∽△PCM;
(2)解:设BP=x,作AD⊥BC于D.
∵AB=AC=5,
∴BD=CD,
∵cosB=
,
∴
=,
∴BD=CD=4,
∴AD=3,
∵∠PAD+∠CAD=90°,∠C+∠CAD=90°,
∴∠PAD=∠C,
又∵∠PAC=∠ADP,
∴△APD∽△CAD,
∴
=,
即
=,
解得:x=
,即BP=
.

(1)证明:∵AB=AC,
∴∠B=∠C,
∵∠APM=∠B,
∴∠APM=∠B=∠C,
∵∠CMP=∠PAM+∠APM,∠BPA=∠PAM+∠C,
∴∠BPA=∠CMP,
∴△ABP∽△PCM;
(2)解:设BP=x,作AD⊥BC于D.
∵AB=AC=5,
∴BD=CD,
∵cosB=
,
∴
=,
∴BD=CD=4,
∴AD=3,
∵∠PAD+∠CAD=90°,∠C+∠CAD=90°,
∴∠PAD=∠C,
又∵∠PAC=∠ADP,
∴△APD∽△CAD,
∴
=,
即
=,
解得:x=
,即BP=
.