试题
题目:
(2012·龙岗区二模)如图,菱形ABCD中,过点C作CE⊥AB,交AB的延长线于点E,作CF⊥AD,交AD的延长线于点F.
(1)求证:△CBE≌△CDF;
(2)若∠CAE=30°,CE=3,求菱形ABCD的面积.
答案
(1)证明:∵四边形ABCD是菱形,
∴BC=CD,∠ABC=∠ADC,
∵∠ABC+∠CBE=180°,∠ADC+∠CDF=180°,
∴∠CBE=∠CDF,
∵CE⊥AB,CF⊥AD,
∴∠CEB=∠CFD=90°,
∴△CBE≌△CDF;
(2)解:∵四边形ABCD是菱形,
∴∠BAD=2∠CAE=60°,BC∥AD,
∴∠CBE=∠BAD=60°,
∵sin∠CBE=
CE
BC
,
∴BC=
CE
sin∠CBE
=
3
sin60°
=2
3
,
∴S
菱形ABCD
=AB×CE=BC×CE=
2
3
×3=6
3
.
(1)证明:∵四边形ABCD是菱形,
∴BC=CD,∠ABC=∠ADC,
∵∠ABC+∠CBE=180°,∠ADC+∠CDF=180°,
∴∠CBE=∠CDF,
∵CE⊥AB,CF⊥AD,
∴∠CEB=∠CFD=90°,
∴△CBE≌△CDF;
(2)解:∵四边形ABCD是菱形,
∴∠BAD=2∠CAE=60°,BC∥AD,
∴∠CBE=∠BAD=60°,
∵sin∠CBE=
CE
BC
,
∴BC=
CE
sin∠CBE
=
3
sin60°
=2
3
,
∴S
菱形ABCD
=AB×CE=BC×CE=
2
3
×3=6
3
.
考点梳理
考点
分析
点评
专题
菱形的性质;全等三角形的判定与性质;解直角三角形.
(1)本题需根据菱形的性质和直角三角形全等的判定方法即可证出结论.
(2)本题需利用解直角三角形求出菱形的边长,再根据菱形的面积公式即可求出结果.
本题主要考查了菱形的性质,解题时要注意解直角三角形和三角形全等的判定的综合应用.
几何综合题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )